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ABSTRACT
The expectations of emotional displays play an important
role in human-human and human-robot interaction in or-
der to achieve a constructive interaction. However, as we
argue in this position paper, current state-of-the-art social
robotic models of emotion still neglect the communicational
aspects of emotions. Based on different psychological mod-
els of emotion, we argue that an intra-personal account of
emotion is not sufficient. Rather, we need inter-personal
accounts of emotion that go beyond the assumption that a
communicative agent simply displays her internal affective
state and takes situational aspects into account that influ-
ence the emotional display.

Keywords
Social Robotic, Emotions, Emotional Alignment, human-
robot interaction, role of expectations in intuitive HRI, ex-
pectations of the robot

1. INTRODUCTION
According to Watzlawick‘s statement with regard to aspects
of pragmatic communication that ”one cannot not commu-
nicate“ [38] it we postulate that this holds also true for (1)
human- robot interactions (HRI) and (2) for emotionality

Figure 1: The bielefeld anthropomorphic robot head
“Flobi”.

which leads, in short, to our basic assumption that in HRI
one cannot be not emotional. This entails that the mutual
emotional signals may or may not be appropriate or aligned
and may thus add to or hamper the success of an interaction.
In extension to the communicational account of alignment
as postulated by Pickering & Garrod [27] we understand an
interaction as emotionally aligned, if both interaction part-
ners have the same interpretation of situational affective in-
formation and thus, form congruent implicit expectations.



Misalignment may occur if expectations with respect to the
quality and reference of an emotional signal are violated. It
is well known from interactions with e.g. brain-damaged pa-
tients that such expectation violations lead to severe commu-
nication problems [24]. Similar effects have been observed
in experimental human-robot interactions [9] which lead to
the development of the humanoid robot head Flobi (cf. 1).
According to the common practice the head is designed to
express the basic emotions proposed by Ekman [8] and is
able to display these in a well readable manner [14].

In psychological research, we find a large number of the-
oretical models to differentiate between several aspects of
emotions and emotion processing (overview in [20]). Psy-
chologists distinguish for instance between theories about
internal intrapersonal feelings on one side and theories about
the emotions expressed in interpersonal interactions on the
other side. Due to the fact that a speaker can not know
what the interaction partner feels, we assume that the most
crucial issue concerning expectations in human-robot inter-
action is to display the expected emotion. In analogy to
Pickering & Garrod we assume that these expectations are
formed on all levels of emotion processing and also concern
the existence of a similar processing system in the interac-
tion partner.

We argue that people expect an emotional display that they
often express themselves in their real-life interactions and
based on this this expectations establish a model of the
robot’s social interaction capacities, The communication of
emotions encourages people to have an implicit mental model
of the human-robot interaction. This is supported by [15]
who found that people sympathize more strongly with a
robot if it communicates emotions. Additionally, their re-
sults show that uniquely human traits are attributed to the
robot if it shows emotional displays.

However, computational models of the communicative as-
pects of emotions are still not existent in social robotics.
Common state-of-the-art implementations of emotional mod-
els in social robotics focus on internal processes of how an
emotion may be computed (such as e.g. the OCC model for
emotion synthesis proposed by Ortony, Clore, & Collins [26])
and simply display the computed model. But in human-
human interaction it is observed that people do not display
their emotional states (feelings). Rather what people show
mainly depends on the emotional context. For instance,
Kraut and Johnston analysed the behavior of 350 bowlers
directly after a successful roll. In contrast to earlier research,
they found that the bowlers did not smile directly after the
roll, that is the successful event presumably evoking an inter-
nal feeling, but only when they turned back to their friends.
The authors interpret that as an indicator for a weaker and
more erratic association of smiling with happiness than with
social interaction [21].

Motivated by the importance of the communicational con-
text of emotional displays we present in this paper first steps
towards a pragmatic model of emotional alignment between

humans and robots as a basis for a computational model
that is able to produce emotional signals that are more in
line with people’s implicit expectations about the robot’s
expression of emotion.

After a summary of previous research in Section II, we ad-
dress the consequences we draw from these considerations
for artificial robotic systems in Section III. In Section IV we
discuss first results regarding our model of emotional align-
ment between humans and robots. Finally, in Section V, we
present a conclusion and recommendations for prospective
research based on our proposed model of emotional align-
ment.

2. RELATED WORK
Alignment theory postulates different levels of alignment
which correspond to the linguistic processing levels. Ac-
cordingly, we postulate emotional alignment levels that cor-
respond to emotional processing levels, namely automatic,
schematic and conceptual. Here, we will focus on the schematic
level where the social functions of emotions play a major
role. Social functions of emotions are distinguished on four
types of analysis [20]: (a) individual (intrapersonal), (b)
dyadic (interpersonal, between two persons), (c) group (a
set of individuals who directly interact), and (d) cultural
(within a large group that shares beliefs, norms, cultural
models). Currently the implementation of emotions in so-
cial robotic systems is focused on the intrapersonal aspect
only. We argue, that an acceptable emotional robotic model
needs to take at least the interpersonal aspect into account
as well. Depending on the robot application, or situational
context, group of even cultural aspects of the functions of
emotions need to be also considered in future research.

During the last decades several researchers tried to explain
the expression and effects of emotions by proposing differ-
ent models. Here we focus on the intra- and interpersonal
models in order to distinguish between interaction relevant
and non-relevant models.

2.1 Intrapersonal Models
Several researchers postulate numerous models about the
intrapersonal aspect. Some of these models are based on bi-
ological approaches, like the James-Lange-Theory ([19]) or
the two-factor theory of emotion [30]. Other cognitive theo-
ries were proposed by Scherer [31], Ortony, Clore & Collins
[26] or Lazarus [22]. Latter theories argue in order for an
emotion to occur some kind of cognitive activity is necessary.
Currently, the cognitive or appraisal theories are widely ac-
cepted and constitute the dominating concept for emotion
modeling in social robots. These theories assume a close
connection between the displayed emotion (mostly via fa-
cial expression) and the experiencing of emotion.

2.2 Interpersonal Models
In contrast to intrapersonal models, the interpersonal mod-
els presume that the expression of emotions is mainly re-
lated to their social function. Fridlund [11] assumes that,



the direct expression of an emotion is not necessarily a so-
cial benefit. Sometimes the direct expression of an emotion
could also be a disadvantage, e.g. showing fear to an op-
ponent might motivate him to attack his victim because he
believes to get an easy take.

According to the intrapersonal models of emotions, the bowlers
in Kraut and Johnston’s study [21] should smile whenever
they are happy, e.g. they make a good roll. But Kraut
and Johnston showed that the bowlers smile significantly
more often when looking at their teammates. These find-
ings are supported by results from a study by Fridlund [10]
where subjects had to watch a comic movie in four different
conditions that varied with respect to their degree of social-
ity, with the least social situation consisting of just one test
subject watching the movie alone alone up to the most so-
cial situation where the subject was watching the film with
a friend. Fridlund found that the presence of a friend in-
creases the rate of smiling without any impact on subjective
experience.

2.3 Robotic Systems
Since the expression of emotions play such an important
role in human interaction, it seems to be helpful to make
robots more social by adding emotional displays. The most
important reason for adding emotional models to robots is,
of course, the possibility to interact in a natural way [5].
But, there has also been work on the role of robotic deci-
sion making, e. g. by Sloman and Croucher who argue that
robots should have emotions in order to prioritize their deci-
sion making process [32]. Yet, this latter kind of approaches
does not take communicational functions of emotions into
account.

In the following section we list three examples of social
robotic systems equipped with an intrapersonal model of
emotions. To our knowledge, all social robots that are equip-
ped with an emotion model, focus on internal processes of
emotion computation but do not communicative informa-
tion into account.
The robot Kismet (cf. 2(a)) by Breazeal [3], for example, is
designed to engage people in natural and expressive face-to-
face interaction. Kismets motivational system is divided into
three parts with needs for social interaction, for stimulation
and for resting. Every stimulus Kismet receives is separated
into its causes and finally appraised based on the intensity
and relevance of the stimulus, the intrinsic pleasantness and
the goal directness. These four computed values determine
a position for the stimulus in the three-dimensional space of
valence, arousal and stance. Due to this three-dimensional
space an emotion is selected and forwarded to the motor
system of Kismet.

Another approach is Velásquez’ pet robot Yuppy [36](fig.
2(b)) with an emotion-based control. All emotions expressed
by Yuppy are generated by a system, which takes several so-
called Natural Releasers into account, e.g. interactions with
the environment or people. However, although the environ-
ment does influence the internally computed “emotion” of
the system, there is no communicational context taken into
account when determining the displayed expression. Again,

it is the computed emotion that is directly displayed

The Robot Feelix (fig. 2(c)) proposed by Cañamero [4] is
an LEGO based 70-cm-tall humanoid. The robot is able
to show his emotional state by several facial expressions.
Namely these expressions are neutral, anger, sadness, fear,
happiness and surprise. To realize their emotional system
Cañamero adopted the generic model postulated by Tomkins
[35] and complemented it with two more principles. So the
implemented theory consists of five variants of a single prin-
ciple: the increase and decrease of stimulation, high and low
stimulation and a moderately high stimulation level. In the
application, the level of stimulation determines the facial
emotion expressed by Feelix.

Each of the presented robotic systems is able to express its
own emotional state, depending on observations, desires or
internal drives. These models enable the robots to adapt
emotions on a very basic level. However, they are not ca-
pable of taking communicational aspects into account. The
following section illustrates our intended shift of focus to a
more adaptive model of emotions in robotic systems.

3. CONSEQUENCES FOR ROBOTIC SYS-
TEMS

Just like the models presented in the previous section many
emotion models in robotics focus on the intrapersonal as-
pects of emotions. Concerning intrapersonal analysis, re-
searchers generally focus on the change of intra-individual
components of emotion. The individual organism is the sys-
tem with respect to which the function of emotions is in-
terpreted. That is, after calculating a feeling, the robot
shows as a result the calculated feeling via a facial expres-
sion. Therefore, many people in the robotics community
believe that displaying emotions means to decide whether
the robot is happy or sad, angry or upset, and then display
the appropriate face, usually an exaggerated parody of a hu-
man person in those states ([25], S.179f.).
We argue against this approach, as it is not in line with em-
pirical findings from research on emotion in communication
[21]. Usually people do not display their actual feelings,
as this could be an evolutionary disadvantage (e.g. [11]).
When implementing an artificial model of emotions in order
to improve the robot’s communicative capabilities, we need
to focus on the interpersonal aspects of emotion. Regarding
interpersonal analysis, researchers focus on how emotions
organize the interactions of individuals in meaningful rela-
tionships. The interacting dyad is the system with respect
to which the consequences of behaviours are interpreted.

In order to achieve a better understanding of the emotional
alignment occurring and interacting on different modalities
and different processing levels, aspects of (1) congruency
and intact or impaired emotion processing on the one hand
and (2) schema-driven emotional reactions and attributions
of emotional references and questions of audience design in
humans and robots, on the other, should be involved.

4. LAYER-MODEL OF EMOTIONAL ALIGN-
MENT



(a) Kismet by Breazeal (b) Yuppy by Velásquez (c) Feelix by Cañamero

Figure 2: The sociable robot Kismet, the emotional pet robot Yuppy and the Feelix humanoid.

As outlined above we assume that emotional alignment in
communication resorts to processes at least at three different
levels of complexity that we refer to as automatic alignment,
schematic alignment and contextual integration and concep-
tual alignment with conscious and self-conscious representa-
tions. Based on these levels we are able to take interaction
into account and can thus capture interpersonal emotional
processes.

• automatic adaptation

• schematic adaptation and contextual integration

• conceptual adaptation with conscious and self-conscious
representations

4.1 Level 1: Automatic Emotional Alignment
Sometimes people automatically display emotional expres-
sions without reflecting the situation cognitively. This auto-
matic emotional alignment has often been described in terms
of mimicry or priming.
Mimicry is a nonverbal response frequently occurring in so-
cial interactions where people mimic expressions like smiling
at another’s delight or showing pain at his injury [1]. Specif-
ically, motor mimicry is a form of mirroring the other per-
son’s behaviour. This happens, for instance, when a mother
who is spoon-feeding her baby can be observed to open her
mouth parallel to the baby opening its mouth [2].
Also within an emotional interaction in robotics it has been
found that a mimicking anthropomorphic robot affects peo-
ple’s evaluations of robots [16]. Participants were taking
part in an interaction scenario during which they read pas-
sages of a fairytale to the robot. They did so with lively
emotional expression. The experiment realized two condi-
tions to manipulate BARTHOC Jr.’s [?] reactions to speech
with emotional content. Specifically, BARTHOC Jr. either
mimicked the emotional content of speech or displayed neu-
tral nonverbal signs of confirmation in response. After the
interaction, participants evaluated the situational fit of the
robot’s reaction, the robot’s ability to recognize the emo-
tions conveyed by the participants and the degree of human
likeness with regard to the robot’s reaction.

4.2 Level 2: Schematic Emotional Alignment

On this level we assume emotional contagion to be one rele-
vant factor in schematic emotional alignment in communica-
tion. It is often based on complex affective representations
resulting from intermodal binding [28] and from combining
perception and production components as well as aspects of
the situational context. Originally, emotional contagion is
described by focusing on different aspects, e.g. mimicry,
biofeedback and contagion as possible underlying related
mechanisms [13]. Concerning our model of emotional align-
ment, the most important characteristic of this second level
(schematic emotional alignment) is its integrative capacity
to allocate information from different emotionally relevant
communication channels (c.f. [12]). Spontaneous alignment
to different partners and contexts will rely on binding of in-
formation, which may also connect antagonistic patterns as
recognized anger/threat and elicited fear/flight.

4.3 Level 3: Conceptual Emotional Alignment
As an addition to the communicative alignment model by
Pickering & Garrod, we assume a type of alignment, which
may not be spontaneous and automatic. So the third level
is the conceptual emotional Alignment, which is often de-
scribed in terms of Empathy in interaction. The term “Em-
pathy”can be seen as the ability to imagine how another per-
son is thinking and feeling and to share these feelings ([29]).
Conceptual emotional alignment is based on conscious pro-
cessing and integrates knowledge about oneself and the rel-
evance of the situation for the own person [33]; [34]. Fur-
thermore it calls, as well as schematic emotional Alignment,
for emotion learning and grounds on explicit emotion recog-
nition (e.g. [6]). As an example the concept of a cognitive
emotional alignment plays an important role in a therapist-
patient or doctor-patient interaction, where the expert rec-
ognizes the patient’s emotion expressions and reacts con-
sciously and (verbal or nonverbal) empathically. This case
has a high relevance for human-robot interaction, because
of the fact, that robots will be employed for healthcare in
nursing homes or working therapeutically (e.g [37]).

These three levels may represent an evolutionary as well
as a functional hierarchy, as Leventhal and Scherer [23] sug-
gested. But we found these different representations to work
quite autonomously in healthy subjects as well as in aphasic
patients [18]. This observed independence is in accordance
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Figure 3: Layers of emotional alignment

with experimental results by Hess and Blairy [17] as well
as in psychiatric groups where the phenomenon is known as
the empathy’s paradox (cf. [7]).

5. CONCLUSIONS
We argue that the display of emotions in both, humans as
well as robots, feed into the expectations of the interaction
partner. This means that in certain situations we have spe-
cific expectations about the affective reaction of our inter-
locutor. If this expectation is violated this will affect our
evaluation of the interaction partner and thus influence our
further behaviour which may become more or less construc-
tive.

In order for a robot to meet our expectations about emo-
tional reactions we have argued that it needs a layered model
of emotional processing and representation. In contrast to
current state-of-the-art social robots and agents this entails
more than an intrapersonal account of emotional display, ac-
cording to which the robot simply shows its computed“emo-
tion”. We argue that also an interpersonal account needs to
be taken that respects contextually influenced rules of emo-
tional reactions.
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ABSTRACT 
We conducted two experiments looking at how to read user 

expectations of a robot's identity within multi-user environments. 

Multi-user environments are unpredictable and fast-paced, which 

can become a challenge for roboticists to interpret. However, they 

also present a rich landscape of data, and we propose 

methodologies to retrieve user reactions to the robot through 

sensor data. We also emphasize the necessity of using the results 

from these methodologies to define a robot's identity based on 

user expectations. In Experiment 1, we found that sensor data 

taken from a handshake with the robot can be used to find 

differences in the views of different demographic groups towards 

interaction with our robot. In Experiment 2, we expand the 

subject pool and reaffirm the usefulness of sensor data in multi-

user environments, while also using questionnaire data to create 

an identity for our robot. 

I.2.9 [Robotics]: Operator interfaces – methods to research user 

expectations and intuitive interaction, multi-user environments, 

robot identity, biofeedback 

1. INTRODUCTION 
Humanoid robots are almost ready for the real world - many are 

safe, durable, and able to perform complex interactions with 

humans, objects, and environments. However, there are two 

important issues that have rarely been addressed within human-

robot interaction (HRI) research. First, as robots make their 

entrance into the real world, they will need to be able to handle 

environments filled with multiple users. Second, robot’s identities 

and personalities have often been designed based on roboticists’ 

intuitions rather than based on the user's expectations. This study 

proposes new ideas on methodology for examining user 

impressions on human-robot interactions within a multi-user 

setting. We also propose molding a robot’s identity based on user 

expectations of a robot. 

Recent HRI research has just begun to focus on placing robots 

within ecologically valid multi-user environments rather than the 

traditional one-on-one interaction model [1, 2]. Many of these 

works focus on the engineering obstacles in having a robot 

interact smoothly with multiple people, and have not yet explored 

ways of measuring human reactions to the robot. It is especially 

tricky to extract data from multi-user environments because users 

have brief, unscripted actions with the robot. Often it is even 

impossible to gather surveys from subjects, forcing researchers to 

rely on other measures. However, these multi-user environments 

are rich untapped sources of information, because they can 

provide large amounts of data from several subjects in an 

ecologically valid setting without any lengthy training of the 

subjects. 

While much of current HRI research looks at subjects’ feelings on 

an interaction, few studies ask the user to define the robot’s 

identity based on their interaction. Roboticists often pre-create a 

robot’s identity before an interaction, assigning it a name, gender, 

voice, etc. However, it is important that a robot’s identity be 

suited to match the expectations of the general public, rather than 

the assumptions of an engineer. Expectations of a robot’s identity 

can vary greatly based on a user’s age, gender, or culture. We 

propose measuring users’ reactions to a robot to determine how to 

best create a robot to match user expectations. We also examine 

how expectations of robot identities differ across these 

demographic groups. Previous studies have shown that the 

collection of questionnaire data alone often ignores other signs of 

a human’s feelings towards a robot [3], so we employ both sensor 

data and questionnaire data to fully assess a user’s reactions to a 

robot within a multi-user setting.  

 

 

Figure 1. An example of the interaction 

The HRP-2 is shown here during Experiment 2, shaking hands 

with a participant while under observation by the 

experimenter. 

 



These two main goals - creating natural interactions within multi-

user environments, and designing methods to define robotic 

identities based on user expectation - are very lofty goals that will 

continue to be themes of HRI research in the years to come. The 

current study aims to serve as a pilot study for new 

methodological ideas at how to answer these questions, and as a 

starting point for discussion.  

2. GENERAL METHOD 

2.1 Overview 
We performed two studies to examine expectations and reactions 

to a robot’s identity within a multi-user setting. Experiment 1 took 

place at an alumni reunion of our laboratory, and assessed the 

usefulness of sensor data for understanding human reactions to 

our robot within this multi-user environment. For Experiment 2, 

we expanded the model of Experiment 1 and asked people across 

the University of Tokyo Hongo campus to interact with the robot.  

For Experiment 2, we examined sensor data as well as 

questionnaire data. The results of Experiment 2 inspired us to also 

perform a brief survey across campus to investigate how to match 

expectations of a robot’s voice to its appearance. 

2.2 Methods 
For both studies, the robot followed the same pattern of behavior. 

It searched for a human face, and after finding a face for five 

consecutive frames, it initiated a randomly chosen action: a bow, a 

handshake, a wave, or inaction. During the interaction, the robot's 

head followed faces that it found, appearing to create eye contact 

with the subject, and it continued following the faces during its 

greeting action. Refer to Figure 1 for an example from Experiment 

2 of the handshake gesture. 

Data were taken from many different sources. We chose measures 

that could be easily taken by the robot within a limited amount of 

time, and that seemed relevant to interpreting human emotion. 

Our main focus for sensor data was during handshakes with the 

robot, as there is plenty of data that can be taken just from the 

contact of the human's hand with the robot's hand. Sensor data 

included the user’s directional forces on the robot’s arm 

(Newtons), tactile measurements from the robot’s hand (a unitless 

analog measure), temperature data  measured from the robot’s 

index and middle fingers (Celsius), and the distance to the 

subject’s face taken from its cameras and face recognition 

software (millimeters). Sensor and video data resulted in about 1 

GB of data per minute, and thus several thousand lines of data 

were collected from each subject. Biographical data for the 

subject were hand-coded by the experimenter and included the 

user’s gender, country of origin, age group, familiarity with the 

laboratory and department, and vocal reactions to the robot. 

Opinion data were taken through a questionnaire to the subjects 

for Experiment 2. 

Data were then analyzed for significance across groups using 

statistical analysis tests including the Independent Samples T-test, 

Analysis of Variance (ANOVA), and Pearson’s Correlation. For 

the purposes of these two experiments, data were separated into 

groups for analysis (such as handshake data versus non-handshake 

data) rather than separated by subject, in order to capture the wide 

range of information within each interaction. Groups for analysis 

were determined by divisions within the biographical data (age, 

gender, nationality, laboratory familiarity) and by binary measures 

taken during the interaction (such as negative reaction versus 

positive reaction). Sensor data were compared between groups 

using all pieces of data that either had a face tracking 

measurement or were a part of the handshake behavior. 

2.3 The Robot: HRP-2 
The robot we used for our experiments is the HRP-2, a bipedal 

humanoid robot developed by Kawada Industries through funding 

from the Japanese Ministry of Economy, Trade and Industry [4]. 

It is 154 cm tall, weighs 58 kg, and has 30 degrees of freedom. 

The joints in its hands and arms are flexible so that they 

accommodate to forces from the user. This results in a safe and 

natural interaction with the robot, and actions such as a handshake 

with the robot are comfortable for the user. For both experiments, 

the HRP-2 was connected only to a power source, and supported 

itself using auto-balancing in its legs. 

The HRP-2 that we used for each experiment is modified for the 

laboratory (The HRP2JSK), including stereovision, a head with 

seven degrees of freedom, and multiple movable fingers [5]. It 

was controlled using code written in Euslisp [6] with a ROS 

architecture [7]. For this experiment, we mainly collected data 

from sensors already built into the robot, such as the force and 

tactile sensors. All joints in the HRP-2 are equipped with force 

sensors, and there are tactile sensors on both hands. We also 

modified the hand of the HRP-2 to include temperature sensors in 

its index and middle fingers (points that made the most contact 

with a human hand during a handshake). Within this paper, the 

data from these sensors will be hereafter referred to as temp0 

(index finger) and temp1 (middle finger). The tactile sensors used 

to measure tactile forces on the hand will be referred to in this 

paper as tactile0 and tactile1.  

3. EXPERIMENT 1 

3.1 Methods 
The HRP-2 greeted alumni who came to visit the laboratory as a 

part of an alumni day. As participants walked into our laboratory, 

the HRP-2 stood at the door and initiated a greeting as described 

in the Overall Methods. Participants were all previous members of 

our laboratory and so had experience with robots. Current 

members of our laboratory also interacted with the robot. In total, 

27 people interacted with the robot (24 male, 3 female) over a 

period of one hour. Seven were current members of the 

laboratory, while twenty were alumni. Interactions were very 

brief, and did not last longer than a few minutes per subject. 

Sensor data were collected several times a second. After selecting 

data with only handshake or face tracking measurements, subject 

data ranged from 118 to 1520 data pieces per subject, with an 

average number of 437 (SD = 372). 

3.2 Methods 
To confirm the validity of our data analysis techniques, we 

compared the sensor data between when the robot was involved in 

a handshake behavior versus non-contact behaviors. As expected, 

temperature (temp0: t(7150) = 30.21, p < 0.001; temp1: t(7150) = 

26.26, p < 0.001) and tactile data from tactile 1 (t(7150) = 33.44, 

p < 0.001) were higher, distance to the subject’s face was closer 

during the handshake (t(1061) = 3.21, p < 0.001), and forces on 

the arm were higher except for in the x direction  (p < 0.001). We 

then compared other group divisions on the same measurements 

for while they were engaged in a handshake with the robot, as this 



was the only time they were actively touching the robot. Group 

divisions were decided based on biographical information we 

could collect without a survey (gender and relationship to the 

laboratory) and vocalizations of the subjects during the 

interaction. All subjects in this experiment were Japanese, so we 

did not look at the effects of culture. Males measured higher for 

force against the arm in all directions of x, y, z, roll, pitch, and 

yaw (for all, p < 0.001). This likely reflects a gender difference in 

strength. Females had higher hand temperatures (temp0: t(11127) 

= 16.25, p < 0.001; temp1: t(11127) = 3.26, p < 0.001), lower 

tactile measurements (tactile0: t(11127) = 10.14, p < 0.001; 

tactile1: t(11127) = 10.25, p < 0.001), and closer faces (t(881) = 

4.80, p < 0.001). Alumni of the laboratory showed a similar trend 

versus current lab members; higher temperatures (temp0: t(11808) 

= 16.65, p < 0.001; temp1: t(11808) = 14.07, p < 0.001), lower 

tactile measurements (tactile0: t(11808) = 26.74, p < 0.001; 

tactile1: t(11808) = 4.93, p < 0.001), and a closer face distance 

(t(1471) = 1.246, p < 0.001). We reviewed video of the 

experiment and coded subjects who made positive remarks (such 

as, “cool”) versus negative remarks (“scary”), excluding current 

members of the laboratory. Four subjects made positive remarks, 

while three made negative remarks. Subjects who made negative 

remarks versus those who made positive remarks had similar data 

patterns to the other group divisions, with again higher 

temperatures (temp0: t(3060) = 12.02, p < 0.001; temp1: t(3060) 

= 17.22), lower tactile measurements (tactile0: t(3060) = 15.86, p 

< 0.001; tactile1: t(3060) = 4.68, p < 0.001), and closer face 

distances (t(293) = 2.31, p < 0.001). Refer to Table 1 for a 

comparison of the average measurements for each group. 

 

Table 1. Sensor Data for Experiment 1.  

Average temperature and tactile measurements for different 

groups are shown, with higher means between group divisions 

bolded. 

Group Temp 0 Temp 1 Tact 0 Tact 1 
Face 

Dist 

All subjects 25.8 24.8 8.8 15.7 1413.8 

Handshake 27.4 26.4 22.2 83.9 1337.1 

No handshake 25.5 24.4 19.9 7.2 1417.2 

Female 27.0 25.5 9.4 34.1 781.2 

Male 26.2 25.4 16.6 51.9 1442.5 

Alumni 26.7 25.7 12.1 47.0 1447.1 

Current members 26.0 25.1 26.5 53.7 1521.0 

Negative 26.2 25.5 7.1 57.9 1387.6 

Positive 25.4 24.2 9.9 70.6 1514.4 

 

3.3 Discussion 
The similar pattern in sensor data (higher temperature, lower 

tactile measurements, and closer face distance) for women, old 

(versus current) members of the laboratory, and people expressing 

negative comments reflects a likely similar reaction to the robot. 

This pattern especially stands out, because while a handshake 

(versus no interaction with the robot) will result in both higher 

temperature and tactile measurements, these groups show an 

opposite pattern of high temperature but low tactile 

measurements. We hypothesize this pattern could reflect 

violations of expectation of the robot for the subject. The 

violation of expectation could be negative, such as stress, or it 

could be positive, such as excitement. Higher finger and hand 

temperatures have been correlated with stress and arousal in 

psychology research [8]. Lower tactile measurements could 

indicate a reluctance to touch the robot or a difference in 

handshake style. The differences in face distance could indicate 

several possible emotions, and further research is necessary. 

Previous research has found that subjects who feel more 

negatively about a robot are more willing to invade its personal 

space [3]. However, this close distance to the robot could also 

indicate close examination of the robot based on curiosity, or even 

a comfort with the robot. All of these ideas are at most 

speculative, but the fact that there are significant differences in 

sensor data across demographic groups demonstrates the potential 

usefulness of this methodology. Further study is required to 

determine the relationship between these biological measures and 

feelings towards a robot, but these results show an interesting 

pattern ripe for future investigation, and that a robot's sensor data 

can be useful even in quick, multi-user interactions to extract 

differences between demographic groups. 

4. EXPERIMENT 2 

4.1 Methods 
In order to reaffirm the effectiveness of our methodology, we 

conducted a second, similar experiment, but on a larger-scale. 

Specifically, we aimed for a longer experiment time, a larger 

subject pool, and working with people who had never met a robot 

before. We placed the HRP-2 outside in the University of Tokyo 

Hongo campus for three hours, during the University’s 

Homecoming event for alumni in all departments visiting the 

campus. People who walked by the robot were asked to briefly 

“meet” the robot as a part of a demonstration for the laboratory. 

As subjects came closer, the robot then tracked the subject’s face 

and initiated a greeting with the subject, as described above in the 

Overall Methods. During Experiment 1, some people remarked 

that they wanted to speak with the robot, so we had the robot 

speak a simple greeting when it initiated its handshake and wave 

gestures. The robot greeted people in Japanese, using an average 

male speech generation voice [9], and said the Japanese 

equivalent of, "Nice to meet you, my name is HRP-2". In total, 70 

people interacted with the robot (49 male, 21 female). Participants 

came from all parts of the school and were of all ages, with an 

average age of 25 years. Unlike Experiment 1, Experiment 2 

included both Japanese and foreign subjects. Seven were from 

Western countries, while sixty-three were from East Asia. 

After interacting with the robot, subjects were asked to fill out a 

one-page questionnaire. The questionnaire was divided into three 

parts: 1) biological information - the subject’s gender, age group, 

and if they had interacted with a robot before, 2) adjectives about 

the interaction - cool, natural, scary, fast, interesting, and cute, 3) 

descriptors of the robot - human versus robotic, masculine versus 

feminine, childish versus adult, Japanese versus foreign, and how 

much the voice matched the robot. Subjects rated the adjectives 

on a scale of 1 (low) to 10 (high). Fifty-five people filled out the 



questionnaire (33 male, 13 female, 9 no response). Fifteen had 

interacted with a robot before, while forty had not.  

4.2 Results 
There were slight differences in the sensor data taken from 

Experiment 2 versus Experiment 1. We coded extra information 

including whether subjects reciprocated the robot's actions when 

waved or bowed to. Due to last-minute difficulties with the 

motors in our robot's hand, we had to switch to a different HRP-2 

that did not have its face distance measurement actively working. 

The tactile sensors were also differently calibrated from the HRP-

2 in Experiment 1, so the range for the data is much higher and 

narrower (239 - 242), still as an analog unitless value. The narrow 

range of the data made us question the accuracy of the tactile data, 

but they had a strong correlation with temperature as expected 

from Experiment 1 (tactile0 to temp0: r = 0.98, p < 0.001; tactile0 

to temp1: r = 0.97, p < 0.001; tactile1 to temp0: r = 0.98, p < 

0.001; tactile1 to temp1: r = 0.97, p < 0.001), so we believe the 

sensors were functioning well. The robot's appearance was the 

same as the robot used in Experiment 1. 

We looked at similar groupings to Experiment 1 and found some 

interesting similarities and differences in the results. A summary 

of the results between groups can be seen in Table 2. A 

comparison of lab members who interacted with the robot to 

people freshly meeting the robot showed a similar pattern to 

Experiment 1. People new to the robot had higher temperatures 

(temp0: t(50510) = 31.86, p < 0.001; temp1: t(50510) = 31.15, p 

< 0.001) and put lower force (p < 0.001 for all directions except 

for y and yaw) on the robot, but unlike Experiment 1, had a higher 

tactile measurement than lab members (tactile0: t(50510) = 28.34, 

p <0.001; tactile1: t(50510) = 28.54, p < 0.001). Gender 

differences were opposite of Experiment 1; females had lower 

temperature (temp0: t(50510) = 1.61, p < 0.001; temp1: t(50510) 

= 2.23, p < 0.001), higher tactile measurements (tactile0: t(50510) 

= 4.67, p < 0.001; tactile1: t(50510) = 4.57, p < 0.001), and 

higher force on the arm (p < 0.001 in all directions) than males. 

Females also more frequently reciprocated the robot's waves and 

bows compared to males (χ
2(2, 70) = 13.66, p < 0.001). We also 

looked at a possible effect of culture on sensor data. East Asian 

subjects had higher temperatures (temp0: t(49096) = 5.94, p < 

0.001; temp1: t(49096) = 5.40, p < 0.001) and lower tactile 

measurements (tactile0: t(49096) = 3.12, p < 0.001; tactile1: 

t(49046) = 3.09, p < 0.001), compared to Western subjects. 

Subjects’ average responses on the questionnaire items are shown 

in Table 3. We examined correlations of biographical data to the 

survey results. Age group was closely correlated to several 

questions in the survey. People in older age groups tended to rate 

the robot higher for being feminine (r = -0.33, p < 0.05), but 

lower for being cool (r = -0.45, p < 0.005), interesting (r = -0.41, 

p < 0.005), cute (r = -0.34, p < 0.05), and having its voice match 

its appearance (r = -0.39, p < 0.01). We also examined 

correlations between questionnaire answers. Some correlations 

validated assumptions about how subjects would respond; 

subjects who found the robot masculine also said the man’s voice 

matched the robot (r = 0.34, p < 0.05), subjects who found the 

robot natural said it was more human-like (r = 0.35, p < 0.01), and 

there was a direct positive correlation amongst the qualities of 

cute, cool, and interesting (p < 0.01 for each comparison). There 

was also a significant correlation between subjects who found the 

robot foreign and those who found it scary (r = 0.43, p < 0.001), 

possibly reflecting interesting cultural perceptions of a robot. We 

did not find any significant differences in opinion data based on 

gender or previous experience with robots. 

 

Table 2. Sensor Data for Experiment 2. 

Average temperature and tactile measurements for different 

groups are shown, with higher means between group divisions 

bolded. 

Group Temp 0 Temp 1 Tact 0 Tact 1 

All 

subjects 
20.0 20.3 239.88 240.80 

Female 21.4 21.7 240.02 240.93 

Male 21.6 21.9 239.64 240.57 

General 

Subject 
21.9 22.3 240.05 240.98 

Lab 

member 
16.2 16.7 236.03 236.92 

East Asian 21.6 22.0 239.71 240.63 

Western 20.8 21.2 240.06 240.98 

 

 

Table 3. Questionnaire results. 

Numbers indicate average scores given by subjects on a scale 

of 1 (low) to 10 (high). Averages are bolded together with the 

term they were closer to. The questionnaire was delivered in 

Japanese, and so there may be slight differences in nuance of 

the English translations used in this paper. 

Word Average Opposite  Word Average Opposite 

Cool 7.57 Uncool   Cute 6.43 Not cute 

Natural 5.47 Unnatural   
Voice 

matches 
6.82 

Doesn't 

match 

Scary 4.48 Not scary   
Human-

like 
4.43 

Machine-

like 

Fast 4.62 Slow   Masculine 8.20 Feminine 

Interesting 8.30 Boring   Childish 3.44 Adult 

 

4.3 Follow-up Survey 
The results of Experiment 2 prompted us to do a brief survey 

across campus to determine which computer-generated voice 

(from AquesTalk's library [9]) best matched the robot's 

appearance. This survey allowed us to choose a voice for the 

robot for future interaction experiments that would best match 

expectations of the robot. We asked 76 people (54 male, 22 

female, average age 27.6 years) across campus to see a picture of 

the robot and then choose one of five different voices (two female, 

two male, and one very machine-like male robotic voice) for the 

robot. The survey was written in visual programming language 

Lazarus [10], and conducted on a multi-touch Windows 7 tablet 

computer. We used only a picture for this survey rather than video 

or interaction with the robot, to get a large number of opinions 

from across campus. Female subjects most frequently chose the 

second female voice (59.1%) while male subjects most frequently 



chose the robotic male voice (27.8%) but were more evenly 

distributed in their choices. People who chose the female voice 

said it was soft, approachable, and easy to interact with. People 

who chose the robotic voice said it matched best because it was 

most stereotypically robotic. These opinion differences reflect 

very opposite differences in expectations for the robot – for it to 

be comfortable for interactions with humans, or for it to be as 

robot-like as possible. It will be interesting to investigate in future 

studies what factors cause different perspectives on the role a 

robot's identity should fill. Despite the differences in trend 

between gender, overall, the most popular voice was the female 

voice (31.6%), and this voice will be used for future human-robot 

interaction studies with our HRP-2. We will also try testing how 

perceptions of the robot's voice change when interacting with the 

real robot versus selecting a voice based on solely a picture. 

 

4.4 Discussion 
The sensor data from this experiment present several interesting 

possible interpretations. First of all, the opposite trend in the data 

based on gender stands out. This difference could come from a 

number of factors – potential differences in the subject pool (the 

female engineer alumni of Experiment 1 versus the general female 

population of Experiment 2), differences in the robot (the added 

voice), or perhaps differences in the experiment presentation (for 

Experiment 1, every alumnus met the robot, while for Experiment 

2, only people who actively approached the robot became 

subjects). However, there is still the similar pattern of a higher 

temperature, lower tactile, and lower force in one gender between 

both experiments. As women in Experiment 2 were much more 

likely to reciprocate a robot's gestures than men, it seems possible 

that the women in this experiment felt more comfortable with the 

robot. However, further investigation into gender differences in 

expectations and feelings towards robots will be necessary. 

One other interesting pattern is the higher temperature and lower 

tactile data of East Asian subjects versus Western subjects. This 

could reflect a possible cultural difference in comfort with 

interactions with robots, or a cultural difference in hand-shaking, 

as it is a much more common greeting in the West. 

We also found a difference in the tactile results from Experiment 

1 and 2 for members of the lab versus non-members. However, we 

believe the difference may not be particularly interesting, as many 

lab members in Experiment 2 used handshakes with the robot to 

test its function, and were thus not "fully involved" handshakes, 

unlike with Experiment 1. 

These interpretations, however, are again only explorative and it 

is impossible to make conclusions about gender or cultural 

perceptions of robots based on only these results. However, the 

results of Experiment 2 demonstrate that even within a different 

setting, we can still find significant differences in sensor data 

between demographic groups. 

Based on the questionnaire and follow-up survey results, we can 

paint a clear picture of the identity people assign to the robot. To 

the average subject, the robot was viewed as a masculine, foreign, 

adult. However, ideas of the robot’s identity changed across 

subject demographics (especially age), and reflect differing 

expectations in how a robot should appear. There is also the 

interesting discrepancy of subjects finding the robot masculine 

and saying that the robot's voice matches, but selecting a feminine 

voice in the follow-up survey. This perhaps points to a need for a 

robot to be dynamic, and able to adjust its identity to match its 

user's expectations, as they may differ strongly based on subject. 

5. GENERAL DISCUSSION 
This study accomplished two main tasks that will be important to 

the future design of human-robot interactions. First, we proposed 

a methodology for retrieving emotion data from subjects when 

interacting with a robot. We found that using sensor data based 

upon measures from a person - their hand temperature, the 

directional forces of their hand, their face distance -  can provide a 

quick look into people's unconscious reactions towards a robot. 

While the current study only begins to get at possible differences 

in robot perceptions, we hope to refine this methodology to 

further explore potential demographic differences and how they 

relate to psychological phenomena in future work. We also hope 

to expand the data we collect to include other information 

typically used in psychological studies, such as skin conductance, 

voice data, and tactile measurements across the entire robot's 

body. Combining the sensor data taken during these quick 

interactions with questionnaire and behavioral data can create a 

comprehensive image of a user's feelings and expectations for a 

robot, and in the future robots could learn to dynamically adjust to 

these signals in order to meet a user's expectations.  

The second main contribution of our study is demonstrating one 

potential method for robots to collect data quickly within 

unconstrained multi-user environments. Using sensor data 

allowed our robots to collect thousands of samples of data from 

individuals in only minutes of time. From reviewing the robot's 

camera data, it is easy to separate out individuals' data and collect 

basic biographical information (such as gender) without having to 

have an experimenter actively collect data on-site or distribute 

surveys. While these two experiments were focused solely on the 

collection and analysis of these sensor data, this methodological 

approach could be used during any human-robot interaction. For 

example, a quick handshake before and after public 

demonstrations of a robot could be used to collect user opinion 

data quickly, and to allow the robot to adjust to its users' 

expectations. The ability to take data quickly allows researchers to 

collect HRI reaction data in fast-paced, complicated, multi-user 

settings, as demonstrated in Experiments 1 and 2. 

Our study also found some potentially interesting demographic 

differences in expectations towards robots that would be 

interesting starting points for future investigation. There appears 

to be a gender difference in attitudes towards robots, but it is still 

difficult to tease apart the direction of this gender difference. One 

previous study found that males viewed robots as more human-

like, while females viewed robots as more machine-like and 

unsocial [11]. However, we found some hints in Experiment 2 

that females may feel more comfortable with robots. We also 

found potential differences in expectation for a robot's role and 

gender from our follow-up survey to Experiment 2. These results 

are still very preliminary, and further study will be necessary to 

examine gender differences in robot expectations,. We also found 

other demographic differences that are ripe for future 

investigation. Some HRI research has proposed cultural 

differences in views towards robotics between the West and the 

East [12], and our results from Experiment 2 also present a 

possible difference in comfort with a robot. The questionnaire 

results from Experiment 2 also uncover a possible age difference 

in expectations of robots; while younger people expect robots to 



be exciting and modern, older people may be less concerned with 

the "cool factor" of a robot. 

Overall, these results present a glimpse into possible methods to 

investigate expectations and reactions to robots within natural, 

multi-user environments, and we propose using these results to 

shape a robot's identity. This is only the first step in investigating 

effective methods for adapting robots to match human 

expectations within a natural multi-user environment, and this will 

be an interesting field for discovery in future research. 
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ABSTRACT 
 
To explore social bonds’ emergence with robots, a field study 
with 49 sixth grade scholars (aged 11-12 years) and 4 different 
robots was carried out at an elementary school. A subsequent 
laboratory experiment with 4 of the participants was completed in 
order to explore social engagement. At school, children’s 
preferences, expectations on functionality and communication, 
and interaction behavior were studied. In the lab, recognition, 
partner’s selection, and dyadic interaction were explored. Both at 
school and in the lab, data from videotaped direct observation, 
questionnaires and interviews were gathered. The results showed 
that different robots’ appearance and performance elicit in 
children distinctive perceptions and interactive behavior and 
affect social processes (e. g., role attribution and attachment). The 
preliminary results will help in the design of robot-based 
programs for hospitalized children to improve quality of life1 
  

Categories and Subject Descriptors 

J.4 [Computer applications]: Social and behavioral sciences--- 
Psychology. 

General Terms 

Human factors, design. 

Keywords 
Social Assistive Robots; long-term interaction; interdependence 
theory; role attribution.  
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1. INTRODUCTION 
 
Social robots, defined as platforms capable to engage people in 
natural social exchange, have already been proposed as 
supplementary tools for rehabilitation [1], autism therapy [2] [3] 
treatment adherence and compliance, and for entertainment, 
enjoyment and comfort [4] [5] [6]. These studies show very 
promising results with children.  To fulfill therapeutic goals, 
robot’s effectiveness depends strongly on its ability to elicit long-
term engagement in children.  
 
A severe disease is a serious event that dramatically affects 
children and their family’s lives. Hospitalized children are 
confronted with stressful conditions including physical pain and 
fear. Social support becomes almost limited to hospital staff and 
relatives, who often are affected themselves by feelings of sorrow 
and concern. Therefore, another therapeutic-related application of 
social robots is to help children to cope with the harmful 
consequences of illness and long-term hospitalization. In this 
context, we identify two different therapeutic interventions that 
may be provided by Social Assistive Robots: rehabilitation 
monitoring and companionship, corresponding with two different 
social situations. In the case of rehabilitation the relationship 
between coach and pupil is goal-oriented and focused on the task. 
In the context of companionship the relationship is needs-oriented 
for levering feelings of isolation and stress. Both roles –coach and 
companion- require context-specific social competences to engage 
children in long-term interaction. Beyond novelty effect, robots 
have to remain compelling over a long period of time to achieve 
the therapeutic goals. Provided that robots have different social 
affordances (e. g., facial expression) and interaction capabilities 
(e. g., conversational skills) we assume that they are not equally 
suitable to take a specific role and to engage with specific target 
users. Matching between role demands and robot competences is a 
central criterion for believable and effective social robots design 
[7] [8]. To address this challenge, interdependence theory offers a 
useful situation-based understanding of interaction [9]. 
 
This work – whose results are shown partially- explore social 
bonds' emergence between children and robots applying models 
and techniques from social psychology. The aim of the present 
work is to observe and understand the interactive behavior 
between (non-patient) children and social robots in order to design 
further in field research involving hospitalized children. Our main 
assumptions are that (i) social situated specific skills and behavior 
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are required to assume effectively social roles in coaching or 
companion interaction, and (ii) salient robots’ features as 
appearance (i.e. lifelikeness, baby or adult likeness) act as social 
cues that elicit prosocial behavior in children. Based on 
observable features, perception is a complex subjective process of 
making sense mediated by cultural and contextual factors [10]. 
This paper describes a study developed in two phases. The first 
one took place at an elementary school where a workshop with 4 
different robots (under the supervision of teachers) was carried 
out. The second phase took place two months later in a behavior 
research lab at the University. It consisted on a series of play 
sessions for evaluating some features of long-term engagement. 
The present study will focus on PLEO and NAO results since they 
are the most employed robots for coaching and companionship 
purposes as it is shown in the next section. 

 

2. DESIGNING ROBOT’S SOCIABILITY  
 
Health related social robots are supposed to take long-term 
assistive and companionship roles in children’s everyday lives. 
Therefore, the essential challenge is to develop robots that keep 
children engaged over time after the initial novelty effect has 
worn off.  
 

2.1 Robots for coaching 
Pupil-Coach Interdependence: This relationship is based on the 
social bond (i.e. affective involvement), task, and goals. Obtaining 
patient collaboration is an essential issue in therapy and requires 
an agreement about the relevance and usefulness of tasks and 
goals. To fulfill the therapy’s goals, the coach must provide 
ongoing supervision, encouragement, feedback, counseling, and 
support. Furthermore, to enhance children agreement and 
compliance is necessary to create an affective bond. 
Rehabilitation is usually hard and motivation must come from an 
affective bond of trust and intimacy (alliance) between pupil and 
coach. The coach must be responsive to pupil needs and emotions 
in an empathic way and find an acceptable balance between goals 
commitment and concern for pupil’s wellbeing. 

Required social skills: For task monitoring it is required an 
engaging communication and contingent feedback. For empathic 
rapport is necessary affective communication and awareness of 
child’s psychological and physical state [11]. 

Selecting a coach-robot. A humanoid robot elicits a more 
consistent role attributed to authority, competence, expertise, and 
reliability. We selected the humanoid robot Nao. Nao (see Figure 
1) is a state-of-the-art human-like robot platform produced by 
Aldebaran2. Endowed with 25 degrees of freedom for great 
mobility it features embedded software allowing text to speech, 
sound localization, visual pattern and colour shape detection, 
obstacle detection and visual communication through different 
LEDs. Nao has been used successfully in different European 
projects within different contexts due to its communicative and 
motor skills. The KSERA3 project aims to obtain a successful, 
effective interaction between humans and robots to guarantee 
acceptance and adoption of service robotics technologies, 
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although it focuses on elderly. In the French project ROMEO4, 
Nao was used as a comprehensive assistant for persons suffering 
from loss of autonomy. In Feelix Growing5 project, Nao has been 
used to mimic the emotional skills of one-year-old child and it 
was capable of forming bonds with people who treat it kindly. The 
robot is able to use the expressive and behavioral cues that babies 
learn to interact with others. In these studies Nao has shown to be 
highly skillful for social multimodal interaction with elderly 
people and children. Moreover, Nao has all the robots’ skills 
identified in [11] for successful coaching: eye-contact, look-at 
behaviors, head, arm and hand gestures, speech and speech 
recognition. In addition, Nao’s articulated anatomy and movement 
accuracy allows for direct imitation by children, especially 
applicable in motor rehabilitation cases. Considering these results, 
Nao has been the robotic platform selected to play the role of 
coach in the in field study. 

2.2 Pet-robots for companionship 
Recently, pet-like robots have been introduced to reproduce the 
social-emotional benefits associated with the interaction and the 
emotional bond between children and companion animals such as 
entertainment, relief, support and enjoyment [2]. This social bond 
is supposed to provide therapy relevant effects to hospitalized 
children in the way real pets do. However, animal-assisted 
activities, that have been proven to be effective for pediatric 
purposes [1], are not possible in hospital environment. 

Owner-Pet Interdependence: The relationship between master and 
pet is based on hierarchy and attachment. We assume that a sort of 
master-pet bond may emerge between a child and a pet robot with 
social skills according to these two dimensions. Hierarchy means 
that children have an obvious higher status that could be enhanced 
if the robot-pet has a baby appearance [12]. The social situation 
defined by the master/pet interdependence, will naturally produce 
engaging activities (i.e. teaching new skills, learning to 
understand, care giving, playing together) and expressions of 
affection and concern. 

Required social skills: In this context, the robot, besides 
considerations of appearance, life-like, and baby-like features, 
must be able to deploy (or acquire) social skills for effective 
communication (i.e. orientation, attention, responsiveness), for 
hierarchy submission (i.e. recognition, obedience), and to express 
and generate attachment (i.e. affective expressiveness). 

Selecting a pet-robot. For the companionship role we used the 
robot Pleo, a robot platform that fulfils the above stated 
requirements of appealing baby-likeness, expressiveness, and an 
array of different behavior and mood modes. Pleo is a commercial 
entertainment robot developed by UGOBE6 equipped with 
different tactile sensors beneath its skin, ground sensors in the 
feet, speakers and microphones. Among its features, it presents a 
set of creature-like personalities and develops internal drives like 
hunger or sleep, and several mood modes: happy, extremely 
scared, curious. Pleo has been tested in several research works 
[13], [14], [15]. These studies focus on the effect of Pleo in a 
long-term interaction, especially with children. In this sense, [16] 
conducted a long-term studio with six families, which were given 
a Pleo for a minimum of two months and a maximum of ten. 
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Similarly, [17] carried out a study based on the opinions of a blog 
users about Pleo. The main results are related to initial 
engagement due to the novelty effect, the care behaviors and the 
long-term disappointment effect. Even so, the majority of studies 
identified the development of a social bond with the robot. 

 
 
Figure 1.  The robots Nao, Aibo, Pleo and  Spykee 

 
3. FIELD STUDY AT ELEMENTARY 
SCHOOL 
 
To explore the factors influencing bond emergence between 
children and social robots, a preliminary study with no patient 
children was carried out in an elementary school. The main 
objective was to understand which robot’s features regarding 
appearance and behavior were more salient to children and 
contributed most to create the first impression. Specifically, 
children interaction with different kind of robots and eventual 
robot-related differences were studied. Children attribution of 
competences and skills based on appearance and previous 
knowledge were explored. Children attitude, preferences, and 
emotional behavior were analyzed.  
 

3.1 Method 
 

3.1.1 Participants 
 
The experience involved 49 sixth grade scholars. The children -29 
girls and 20 boys- were aged between 11 and 12 years old.  

 
3.1.2 Setting 
 
The activity was presented as a workshop on robotics prepared 
together with the sixth grade tutors and displayed as a curricular 
complementary activity to Sciences lessons. The activity took 
place at school during ordinary class time and under continuous 
supervision of teachers. 
 

3.1.3 Robots 
 
The robots presented were a mechanoid functional robot 
(Spykee), a humanoid platform (Nao), a baby dinosaur robot 
(Pleo) and a mechanic-like puppy (Aibo). These four robots let us 
study and understand the role of appearance (e. g., animal vs. 
humanoid and functional vs. biomorphic) in a first impression 
situation. However, in this paper we focus on interaction with Nao 
and Pleo, the two robots selected for therapeutic contexts in our 
ongoing research. 
 

 
 
 

3.1.4 Activity 
 
Robot choice and group assignment: The four robots in off state 
were exposed together on a stage and children were encouraged to 
observe them freely and choose the one they prefer to play with 
during the workshop (Fig. 2). Children were not allowed to touch 
them and no further explanation was given. Children were 
assigned to one of the four workshops according to the expressed 
preference. The workshops took place simultaneously in two 
classrooms, the gymnasium and in the hall. 
Self-presentation: The robots were activated and performed non-
interactive behavior, i. e., pre-defined routines. Self-presentation 
behaviors were deliberated designed in order to show and suggest 
an engaging but realistic robot motor and interaction skills and 
competences. Nao’s self-presentation started with a short 
introduction, speaking loud, waving hands, and showing its arms, 
legs and head mobility. It continued displaying its colored LEDs 
eyes in an entertaining way followed by playing a song and 
dancing accordingly. It ended the presentation with a Tai Chi 
dance, where Nao exhibited great balance and mobility skills. 
Pleo's skills were shown through some examples of human robot 
interaction. Firstly, it wakes-up by touching its contact sensors, 
next it goes sleep again by rubbing its back. Again wake-up,  it 
became angry hanging it by the queue. Walking was shown when 
standing on a desk a head movements were performed while it 
was embraced. 
Interactive behavior: Children were encouraged to play with the 
robots in a semi-oriented way. Conductors proposed interactive 
activities, answered children’s questions and asked them about 
perceptions and expectations in an informal way. Conductors also 
monitored children to prevent robots damage, and even explored 
robots functionality boundaries under children request.  
 
3.1.5 Techniques 
Direct observation: The whole session was videotaped (still 
cameras were placed in the 4 settings) and a photographer covered 
the activity. Additionally, in two of the workshops the sound was 
digitally recorded.  
Questionnaires: Participants answered a post-experience 
questionnaire to assess satisfaction and perceptions about robots. 
The questionnaires were composed by yes/no questions (i.e. 
‘Would you like to have a robot at home?’), multiple choice items 
(i.e. ‘If you had a Nao robot, what would you use it for?: 
Playing/Helping with homework/Helping with 
housekeeping/Connecting to the Net/Others’); and open questions 
(i.e. ‘What do you think engineers should improve in Pleo 
robot?’). 
Facilitators: Every workshop was conducted by a robotics 
engineer and an assistant who took notes on observation sheets, 
supervised the recording and passed the questionnaires. 

 
 
 
 

Figure 2.  Robots exhibition for selection 

 

 

Figure 3.  Interactive behavior with Pleo and  Nao 



2.1 Results 
According to the research question and the aim of this paper, 
further results will only be referred to workshops with Pleo and  
Nao. Although the whole experience was videorecorded (for 
future analyses), in this work we focused on initial perceptions 
and expectations, interactive behavior and utterances observed in 
the workshops with the robots from a qualitative approach. 33 
children selected Nao and Pleo. Pleo was the most selected robot 
with 18 choices -surprisingly all the children who chose it were 
girls- followed by Nao (4 girls and  11 boys). 
Tables 1 and 2 summarize the results of workshops with Pleo and 
Nao, respectively. 
 
Table 1. Initial perceptions and behavior with PLEO 
 

 Observed behavior and utterances 

Reasons for preference 

Nice aspect 
So cute! 
Animal likeness 
Baby likeness 

Expectations (before 
performance) 

Love and affect responsiveness  
Baby likeness behavior 
Emotional expressiveness 
 Make sounds 

Liked most after Self-
presentation 

Seems a baby 
How  it moves 

Interactive behavior 
Baby talk 
Affection giving  
Taking care activities  

Wish it could do/have/be More life-likeness /Talk /Eat / Grow up 
Responsiveness/Not so sleepy 

 
Table 2. Initial perceptions and behavior with NAO 
 

 Observed behavior and utterances 

Reasons for preference 

Seems/is a person 
Seems an ape 
Seems more articulated 
Is the biggest robot 

Expectations  
(before performance) 

To walk 
To grasp things 
To speak 
To move hands 
To dance 
To do Matrix 
To follow instructions 
To sing 

Liked most after self-
presentation 

Thai Chi routines 
Dancing 

Interactive behavior 

Spontaneous imitation 
Admiration 
Spontaneous Applause 
Amazement/ Wow! 
Curiosity about technical issues /That in 
the head is a USB plug?/ What’s for? 
Exploring Nao’s physical , cognitive and 
social capabilities and constrains/Is he 
hearing me now?/Does he see me? 

Wish it could do/have/be 
(From questionnaires) 

Hold a conversation 
Capability to communicate in natural 
(children’s native) language 
Non verbal communication skill: gaze and 
intonation/ When looking at people should 
look in the face. 
Talk about itself/ Say what he is thinking 
Improve motor competences/ Play 
football/hockey and perform moonwalk 
Assist/ Help with my homework 

 
4. Interaction in the lab: meeting again 
 
A second meeting was designed to explore social bonds 
emergence. After the school experience, a series of play sessions 
with Pleo was conducted in the lab. The aim was to observe 
children behavior when they met Pleo again and explore how the 
previous contact with the robot in the school affects –it’s 
projected on- subsequent interaction. Specifically, differences and 
similarities on interactive behavior at laboratory and at school 
were assessed.  Children interaction in a controlled situation under 
different social conditions (with a facilitator, alone, with a peer, 
and in a focus group) was explored. Finally, the role adopted by 
the participants during the interaction with Pleo was explored. 
 

4.1 Method 
4.1.1 Participants 
 
At the end of the activity in the school, volunteers' participation for 
a second activity was requested. The interested children were given 
a form to be fulfilled, signed and sent back by their parents or 
tutors in case they consent participation. Eight parents consents 
were received and finally four children were selected for 
availability criteria. Three of them had the role of the owner and 
the fourth girl interacted with them as a part of the lab experience 
(see below Playing with Pleo with peers). 
 
4.1.2 Setting 
 
The experience was carried out in a behavior research lab at the 
University two months after the school experience. The play 
session took place in the test room and the group interview in a 
meeting room. 
 

4.1.3 Robot 
 
Two Pleo robots were employed for the experience. One of them 
was programmed to exhibit purring and slow smooth movements, 
and the other one was growling and agitated. 
 
4.1.4 Activity 
 
Choosing a Pleo: The participants were encouraged to choose 
between two identical Pleo robots that were performing the above 
mentioned behaviors. 
Playing with Pleo in adult presence: The instruction given by the 
conductor was “You can stay here with Pleo as long as you want. 
When you want to give up, just tell me”. 
Playing with Pleo alone: The facilitator leaves the lab and the 
child stays alone with the robot. 
Playing with Pleo with peers: The participant received another 
classmate in the lab to create a situation that enhances talking 
about the experience and contrast opinions. The participant was 
encouraged to talk freely about Pleo to her classmate. 
Group Interview: When all the participants finished their 
laboratory experience, a group interview was made with the four 
participants, a facilitator, and a robotic engineer. During the 
interview the Pleo robots were activated on the table.  
 



 
4.2 Results 
 
The four participants chose the Pleo that exhibited calm behavior 
to play with. The girls manifested that Pleo reminded them the 
robot in the school, so they seemed to recognize it as a familiar 
robot which had been with them before. They wanted to know and 
asked the facilitator which of the four Pleos in the lab was the one 
they have met at school. 
 
The role they took was consistent with the one adopted in the 
school, but in this case the difference was that the participant had 
more time to interact with the robot and she was alone with it 
during a while. The interactive behaviors observed were petting, 
lovely hugging, stroking, and baby talk. When the participant 
played with a peer, she adopted neatly the owner’s role 
interpreting Pleo’s behavior and showing understanding of what it 
likes and likes not (i.e. "It’s difficult for him to fall asleep", "It’s 
not hungry now"). Finally, in the group interview, the girls shared 
their impressions about Pleo and compared it to a real pet 
companion. They expressed their enjoyment with the robot and 
agreed with the vision that they could have a closer bond with him 
similar to the owner-pet relationship. 
Table 3 summarizes preliminary results with Pleo in the Lab 
experience, grouped in five situations: selecting Pleo, in the lab 
with facilitator, alone with Pleo, with a classmate and group 
interview. 
 
Table 4. Interactive behavior in the lab 
 
 

Situation Observed behavior and opinions 

Selecting a Pleo 
All the participants chose the ‘nice’ one, 
picked it up and took  in their arms 

In the lab with facilitator Petting,  hugging and feeding behavior 

Alone with Pleo in  the lab 
New activities appeared /Putting him into 
the doghouse/ Grabbing by the tail / 
Insisting on feeding 

With a classmate 
The presence of a peer helps the girl to 
express her feelings and reinforce her role 
of owner.  

Group Interview Remarks 

Similar to real pets 
Owner feelings  
Differences/similarities with the one in the 
school (more active and fun) 

 
5.  DISCUSSION 
 
This study shows that robots’ salient features as humanoid, 
mechanic, or animal appearance affect children preferences and 
are social cues in role attribution. According to appearance and 
performance children ascribe both functional and social 
characteristics to robots and interpret their behavior. 
 
Consistent with the literature reviewed, two different interactive 
behavior patterns emerged in Nao and Pleo workshops. 
Interacting with Nao, children show spontaneous imitation, 
admiration and amazement. Nao autonomous behavior (i.e. 
seeking faces to orient interaction) elicits immediate children 
attempts to catch its attention and to draw Nao into interaction by 
waving, saying hello, or approaching to its face. Nao performance 

provokes curiosity and willingness to explore and investigate. The 
expectations about robot capabilities are high (i. e. conversational 
skills, gait) as a result of its human-like appearance and athletic 
performance. On the other hand, Pleo generates in children need-
oriented affective behavior (e. g., giving affection) and involve in 
taking care activities. Children expect animal-like behaviors such 
as ‘making sounds’ and eating and ascribe Pleo animal 
characteristics such as internal drives (i.e. sleepiness, anger, 
hunger), reasoning and intention. In the lab session, children 
resumed the relationship and reinforced the initial social bond 
built during previous experience at school. Children asked for 
their baby dinosaur -the one they met at school-, and interpret 
recognition in Pleo’s responses. 
 
6. CONCLUSIONS 
 
Children’s perceptions and expectations about robots as social 
actors affect interactive behavior through role attribution. Robots 
appearance and primary performance should be carefully designed 
to elicit role consistent engaging but realistic expectations as a 
first step in long-term relationship emergence and maintenance. 
Considering children suggestions after the interaction experience, 
some orientations for interface and technical specifications could 
be proposed. For instance, Pleo should show more life-likeness 
behaviors (e. g., talk, eat, grow up, sleep) whereas Nao should 
present more human skills (e. g., verbal and non verbal 
communication skills, motor competences and assistive tasks).  
Understanding of social processes of interdependence and 
relationship dynamics in specific social situations seems 
necessary for optimizing matching between robot affordances and 
context-specific social demands. To achieve this objective is 
necessary to assess human-robot interaction in terms of role 
consistency.  
Provided that interactive behavior is strongly context dependent, 
further field studies with target users, i. e., long-term hospitalized 
children are required to investigate the establishment and 
maintenance of children-robot companionship in health related 
scenarios.  
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Abstract—Motor Babbling has been identified as a self-
exploring behaviour adopted by infants and is fundamental for
the development of more complex behaviours, self-awareness
and social interaction skills. Exploring the possible space of
movements and articulations is the first step towards social and
intentional behaviours.

We adopt motor babbling for the learning strategies of a
humanoid robot that maps its random arm movements with its
head movements, determined by the perception of its own body.
In this paper, we analyse three random movement strategies and
experimentally test on a humanoid robot how they affect the
learning speed.

We believe that intuitive human-robot interaction requires
physical and dynamic interaction and that creating a body map
through learning is a major prereuisite.

I. INTRODUCTION

Researchers in Human-Robot Interaction are interested in
developing models inspired by human cognitive processes, in
particular such that they result in a natural interaction be-
haviour. Providing the robot with skills that let the interaction
look clever and intuitive ensures a high level of satisfaction
for the interacting person.

Cognitive robotics takes its inspiration from developmental
studies in humans. Infants incrementally develop cognitive
abilities through the interaction with the environment and with
persons. Embodied agents, humans, other animals as well as
robots, can generate useful sensory stimulations by interacting
with the environment. Their actions change the environment
and what they perceive from it; on the other hand, what they
perceive influences their actions consequently. This is known
as sensorimotor coordination[1].

We understand an observed behaviour as we compare a
simulated execution of it with a set of motion primitives we
have in our memory. But, how much do perceptual abilities
require motor skills? In order to imitate a demonstrator, an
observer has to recognize the action, but in order to recognize
the action the observer must be able to perform the action. This
tricky question can be answered if we look at the development
as an incremental process: infants learn an ability on top of
other abilities already present[1]. Body babbling observed in
infants has been classified by Meltzoff and Moore[2] as a
mechanism that provides experience for mapping movements
to the resulting body configurations.

Such a sensorimotor stage, where infants explore the en-
vironment in terms of the physical actions they can perform,
inspired several robotics studies. In [3], the role of exploration
is to gather evidence to form and test models. In [4], Demiris
et al. propose a way for combining knowledge through explo-
ration and knowledge from others, through the creation and
use of mirror neuron inspired internal models. Saegusa et al.,
in [5], consider motor-babbling-based sensorimotor learning
as an effective method to autonomously develop an internal
model of the own body and the environment using multiple
sensorial modalities.

Exploring the possible space of movements and articulations
is the first step towards more intentional behaviours, like
exploring the world, wherein the agent wants to figure out how
its actions change the state of the world. Socially speaking, an
agent might be aware of itself, first, to be aware of the other
as a being like the self with individual wants and intentions.

In the next section, we discuss the different prerequisites for
intuitive interaction and how they could be implemented on a
humanoid robot. We then adopt one of the major prerequisites
for HRI - motor babbling and learning of a body map - for the
learning strategies of a humanoid robot that maps its random
arm movements with its head movements, determined by the
perception of its own body. We equip the robot with an ele-
mentary attentive system for perceiving its own body and for
moving its head to focus on it. A self-exploring robot that can
optimally adapt to the abilities of its own body in interaction
with the environment, itself and others, could give a human
the impression that it is intelligent, interested in something it
would like to discover, driven by the curiosity of exploring its
own movement. We analyse three random movement strategies
and experimentally test on a humanoid robot how they affect
the learning speed and how much energy they consume. We
also implemented a simple algorithm for learning body maps
through motor babbling. In the last section, we discuss how
the results on motor babbling could influence future research
aiming at intuitive human-robot interaction.

II. PREREQUISITES FOR INTUITIVE HUMAN-ROBOT
INTERACTION

What do we understand by intuitive interaction? This ques-
tion is related to expectations of the human, but can also



be described as an interaction that results in a satisfying
experience for the human requiring a low cognitive load. It
also means that the person does not have to learn a specific
interaction protocol for the human-robot interaction, but that
the robot adapts to the type of interaction initiated by the
person. Intuitive interaction is still possible in case the human
has no strong expectations on the robot, its capabilities, and
reactions, but enters the interaction scenario with his or her
expectations about interactions with other people, animals or
even non-intentional agents or objects.

We have identified three different kinds of prerequisites for
intuitive interaction:

a) Physical prerequisites for intuitive interaction. These are
properties of the morphology, sensors types, and appearance
of the robot. End-effectors with a large number of degrees
of freedom, and a variety of sensors, ideally similar to those
of a human, would facilitate the interaction and increase the
interaction experience for the user. The properties of the
environment or of the user interfaces also seem to be of
importance when used as tools for interacting with robots (see
for example [6]).

b) Representation of self and other. In [7], the authors
claim that perspective taking and Theory of Mind skills are
crucial for engaging in sensible short time interaction. For
implementing such abilities, the robot must be aware of its
own body and abilities. A prerequisite for HRI is, thus, the
ability to build a body map, which can be done through
body babbling, through interaction with the world or through
interaction with others. Meltzoff et al. demonstrated in [2]
that body babbling provides experience mapping movements
to the resulting body configurations. Hafner et al., in [8],
argued that self-other distinction is crucial for the development
of sophisticated forms of social interaction and proposed a
unified representation of a body schema in order to solve the
body correspondence problem. Self-other representation is also
necessary for simulating the action of the interacting partner
through perspective taking.

c) Social skills and expectations. When interacting, the robot
and the human constitute a dynamic system [9]. Each agent
might be able to predict and react to the actions and inten-
tions of the other, often without any verbal communication.
Developmental research supports the idea that actions are
learnt incrementally and one of the most powerful social skill
to do that is imitation. A robot might be able to learn by
imitation and to generalize the learned behaviours in different
environments and situations. Adapting to physical and social
circumstances is a fundamental prerequisite for HRI. With-
out any doubt, moreover, a robot able to express emotions
enhances naturalness of human-robot interaction [10].

We chose to investigate one of those prerequisites of intu-
itive interaction - representation of self and others - through
body babbling.

Fig. 1. A typical babbling sequence using the Nao platform. In the lower
part are the corresponding frames grabbed by the onboard camera (note that
the camera is placed below the fake eyes of the Nao).

III. MOTOR BABBLING IN A HUMANOID ROBOT

We implemented learning through self-exploration on a
humanoid platform1 whose dimensions resemble those of a
child, actually simulating the real visual input perceived by a
young human subject (see Figure 1).

During the learning process, the robot performs random
arm movements and tries to estimate the position of its end-
effector (the hand, where a marker is placed on), analysing
the frames grabbed from its head camera. We implemented an
attentive system composed by two modules: marker detection2

and motion detection. When a marker is detected, the head of
the robot is rotated in order to focus on it, and the current
configuration of the joint angles of the arm and of the neck
are stored and coupled with the estimated 3D position of the
marker (representing the hand). Due to the limited opening
angle of the camera and the robot’s short arms (like a child),
for most of the time the robot has to rotate its head searching
for the marker. The motion detection module is used in order
to find the moving arm. Frame by frame, when the head is
not moving, the optical flow between the current frame and
the previous one is computed. The magnitude of the optical
flow is fed into the CAMShift algorithm to find the centroid
of the fastest moving area of the video to look at. Figure 2
shows the scheme of the learning algorithm.

IV. RANDOM MOVEMENT STRATEGIES

The results we present here refer to three different types
of movement strategies for motor babbling: Purely Random
(PR), Random Walk (RW) and Inertial Random Walk (IRW).

The babbling is performed on 4-DoF of the Nao arm: two
each for shoulder and elbow. In PR, random values are sam-
pled from a uniform distribution over the range of each joint of
the arm; in RW, random steps (increase/hold/decrease the joint
by angle-step) are sampled from a uniform distribution; IRW is
a kind of smooth random walk algorithm which simulates the
inertia that a moving mass has when it changes the direction
of the motion. Instant by instant, a random step is sampled
from a uniform distribution, as in RW, and a small amount of

1Nao robot from Aldebaran. We adopted the NAO-TH framework
(http://www.naoteamhumboldt.de)

2We use the ARToolkit for detecting markers
(http://www.hitl.washington.edu/artoolkit).
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Fig. 2. Learning Algorithm. The marker detection module inhibits the motion
detection module, giving a higher saliency to the hand of the robot.

the previous step is added to the current one, simulating the
fact that the change of direction is not immediate, as the mass
tends to follow the past movement by inertia.

V. MOTOR BABBLING RESULTS

We simulated each strategy for 8 minutes. Figure 3 shows
typical trajectories of the arm joints and of the neck joints for
each type of babbling. PR generates sparse random commands
in the action space; even if it can be thought as a good strategy
able to explore uniformly the action space, the long jumps in
the arm joints configuration very often increase the probability
to lose the sight of the hand. This results in a very time
consuming strategy with a low marker detection rate. Table
I shows some results for each strategy. Low detecting rates
depend on a high probability that movements go outside the
field of view of the camera, and on the time needed to find
again the arm by moving the head.

Even if IRW is the strategy that better resembles human
motion, up to now RW seems to be the best strategy in terms of
learning speed. IRW seems to perform worse than RW due to
its tendency to follow the motion inertia towards areas wherein
the hand is partially occluded by the shoulder of the robot. The
last row of Table I represents, for each strategy, the maximum
jump in degrees that a random movement can perform3.

We also measured the sum of all the distances (in degrees)
covered by each joint for each strategy during a certain
amount of time, and compared these values between the
three strategies. We used this measurement as an estimate
of energy consumption. In simulation, IRW seems to be the
cheapest strategy. Consider, for a moment, that the arm is
moving toward a given direction. If a new control command is
generated toward the opposite direction of the current motion,
the simulated inertial strategy will not change instantaneously
the direction. Instead, it would lower the speed, first, and then
change direction. Going directly on the other direction (as

3The ranges are (in degrees): ShoulderPitch, from -120 to 120; Shoulder-
Roll, from -95 to 0; ElbowRoll from 0 to 90; ElbowYaw from -120 to 120. In
RW and IRW, only a maximum step of 10 degrees is allowed for each joint.

Fig. 3. In the left column of the figure, typical values of the joints angles
of the neck for each strategy (PR, RW, IRW) are shown. The right column
shows the values of the joint angles of the arm.

RW might do), would consume more energy. Due to its fast
changes of direction and movements, PR seems to be the worst
strategy, again.

The sum of the distances is an estimate of energy consump-
tion but, on the other hand, will give us the same amount of
energy spent for a continues movement from 0 to 40 and a
movement going from 0 to 20 and then back to 0, for instance.
For that reason, we also measured the electric current applied
to each servo and compared the averages of the total current
applied to all the motor between the three strategies.

We also considered the two servos of the neck (which
move accordingly to the attention system), measuring again
the distance (in degrees) covered by all the joints, (inclusive
the neck ones) for both energy measurements.

All the results confirm that PR is the worst babbling strategy
in learning a mapping between the joints configuration of the
neck and that of the arm, because of the low marker detection
rate and of the high energy dissipation.

Analysing qualitatively the expectation of a human observer
on the sensorimotor coordination skills of the robot, it can be
noted that PR has also a significantly low rating. The robot is
most of the time babbling and searching for the marker, due to
the often long jump between an arm movement and the next
one. RW and IRW have a higher rating.



TABLE I
DETECTION RATES FOR THE DIFFERENT STRATEGIES

PR RW IRW

Detections per sec. 1.04 4.63 2.63

Max jump in deg. 665 40 40

TABLE II
ENERGY CONSUMPTION ANALYSIS

PR RW IRW

Si
m

ul
at

io
n Distance Covered

PR 1.000 0.696 0.616
RW 1.436 1.000 0.885
IRW 1.622 1.130 1.000

R
ea

l
R

ob
ot Electric Current

PR 1.000 0.752 0.766
RW 1.330 1.000 1.018
IRW 1.306 0.982 1.000

VI. LEARNING BODY MAPS THROUGH BODY BABBLING

Learning the mapping between the proprioceptive sensory
data and the visual acquired information does not consist
only in collecting the data through body babbling. The
knowledge base represented by the set of stored vectors
[markerPosition; neckConfiguration; armConfiguration]
can be used for inferring data given some evidences. For
example, given a point in the hand’s action space, a
learned body map can be used to predict the neck’s and
arm’s configurations which let the visually detected marker
(representing the hand) be as close as possible to the desired
point.

In this work, a mapping between the pro-
prioceptive data, represented by the 6D vector
[neckConfiguration; armConfiguration]4, and the
external data, represented by the (x, y) image coordinates of
the marker placed on the hand of the robot, has been used to
perform a simpler forward prediction: given a configuration
of the neck and arm joints, infers where the position of the
hand will be (here: the coordinates of the marker, if detected,
in the image).

Given a query (neck and arm joints), we used a k-Nearest
Neighbours algorithm to find the k closest vectors in the
knowledge base (using the OpenCV’s FLANN library). For
each vector, the elements related to the marker position are
extracted. The prediction of the outcome is computed as the
mean of these values. A control command is then applied
to each joint both of the neck and of the arm, as the mean
of the relative elements of the k vectors. This algorithm has
been adapted from [11], [12]. For each prediction, the error is
measured as the distance between the predicted point in the
image and the detected (if any) marker position resulting from
the applied control command.

Preliminary results on the prediction performance have been
collected from babbling samples using the RW and IRW

42 DoF for the neck and 4 DoF for the arm.

random movement strategies. A knowledge base has been
created from a session of RW babbling, resulting in 662
samples. Test data were extracted from the babbling with a
probability of 0.05 from the knowledge base (resulting in
27 samples). Given a frame of 320×240 pixels, the average
distance between the centre of the detected marker and the
predicted position of the marker has been measured as 15.29
pixels, using k = 5 in the k-NN algorithm.

Contrary to our expectations, RW results in better predic-
tions of the position of the hand than IRW. This might be due
to the joint space covered being smaller for IRW.

A learned body map using IRW babbling has also been
tested. With 548 samples in the knowledge base and k = 5,
25 testing predictions (extracted as before from the collected
set) gave an average error of 21.74 pixels.

It has to be mentioned, that during motor babbling the robot
attempts to follow the hand with its gaze, trying to maintain
the marker close to the centre of the image. This means
that the knowledge base is dense around the centre of the
image (approximatively an ellipse whose axes are 2/3 of the
image’s width and height) and sparse at the edges of the image,
resulting in better predictions when the arm and neck query
configuration is close to those stored configurations resulting
in a marker position near the centre of the image. This leads
to a more exact prediction when the marker is in the center
of the visual field.

VII. FUTURE WORK ON BODY BABBLING

In this work, we analysed three random movement strategies
in self-exploration for a humanoid robot. However, further
interesting strategies could be introduced.

Infants, for the essence of play, engage in particular activi-
ties for their own sake. This suggests the existence of a kind
of intrinsic motivation system [11] which provides internal
rewards during these play experiences. In [13], the authors
show a curiosity-driven robot which explores its environment
in search of new things to learn: the robot gets bored with
situations that are already familiar, and also avoids situations
which are too difficult.

However, establishing which is the best random movement
strategy is not the only aim of our work.

Imitation of hand trajectories of a skilled agent could be
done through a mapping of the proprioceptive and external
data. Behaviours, or motion trajectories, could be modelled
by mapping regions of the action space with the states of a
discrete probabilistic model[14], [15].

Learning performance could be improved using a head
equipped with a pan-tilt camera mechanism to reproduce both
neck movements and saccades. These learned skills are the
prerequisites for imitation learning in human-robot interaction.

Moreover, the simple adopted attentive system is the pre-
cursor for a more complex system able to detect faces and
eye-gaze directions. Studies on the development of cognitive
functions in infants (i.e., Baron-Cohen[16]) identify this set
of skills as necessary for the acquisition of complex social
behaviour, like joint attention. These abilities are fundamental



in the simulation theory of mind reading and compose part of
the so called Theory of Mind, that is that set of skills necessary
for understanding behaviours and intentions of others. A
very interesting robotic example is the system developed by
Scassellati [17] in an embodied theory of mind architecture
for a humanoid robot.

VIII. DISCUSSION

We showed and analysed three different random movement
strategies for generating control commands for the arm of a
humanoid robot and we showed how sensorimotor coordina-
tion can be performed using a simple attentive mechanism
which drives the robot’s head movements to focus its gaze
towards the moving hand. We used a simple technique for
learning the mapping between different sensory modalities and
we equipped the robot with predicting abilities of sensory
consequences (the position of a marker placed on the hand
of the robot) from control commands applied to its neck and
its arm.

Possessing a body map allows the robot to become aware of
itself. Self-awareness is a prerequisite for a robot interacting
in an intuitive way with a person We discussed how body
maps are important for a robot for having an intuitive human-
robot interaction and we demonstrated how body maps can be
learnt through body babbling. A robot behaving as self-aware
can increase the success in fulfilling the expectations of the
interacting partner.
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ABSTRACT
We present an exploratory study that surveys 287 people
from a wide range of ages and cultural backgrounds on both
their attitudes towards robots and which of 12 fictional films
portraying robots they have seen. Our preliminary findings
suggest a relationship between overall movie watching and
NARS scores (more robot movies seen correlates with more
positive attitudes towards robots), and between certain pos-
itive portrayals of robots and NARS scores (Bicentennial
Man, Moon, and Wall-E contribute to more positive atti-
tudes).

Categories and Subject Descriptors
K.4.2 [Computer and Socity]: Social Issues; I.2.9 [Artificial
Intelligence]: Robotics

General Terms
Experimentation

Keywords
robots, human-robot interaction, film, culture

1. INTRODUCTION
Whenever a person encounters a robot for the first time

they bring with them a plethora of prior beliefs, attitudes,
and expectations. These ideas can come from many places,
including cultural beliefs [8, 13], user expectations [14], robot
role assumptions [12], and so on. However, perhaps the most
oft mentioned “robot topic” we the authors hear about, both
in experimental and lay settings, is film. We are asked if
we’ve seen The Terminator . We are asked if we’ve seen I,
Robot . Occasionally we are asked if we have seen the latest
(real) robots from ATR, CMU, or MIT, but most typically
we are asked about fictional robots depicted in film.

It is not surprising that most people’s attitudes about
robots come from popular media; in 2009, only 5.6 mil-
lion domestic service robots and 3.1 million entertainment
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Figure 1: A few of the people at the London Se-
cret Cinema exhibition interacting with our face-
mimicking robot. Photo credit: Guerilla Science.

and leisure robots were purchased globally [4]. These fig-
ures indicate that a relatively low percentage of the global
population has daily contact with a personal robot. More-
over, the types of personal robots purchased were largely
vacuum-cleaning robots, lawn-mowing robots, robotic toys
and hobby systems - none of which resemble the advanced,
futuristic humanoid robots often portrayed in popular cul-
ture.

Thus, it is highly likely that people’s attitudes toward
robots are largely shaped by popular culture and media such
as films, newspapers and television. Indeed, Ray et al. [7]
report that while only half of their participants stated that
they had had some previous contact with robots in reality,
more than two-thirds had seen robots on TV and 65% had
seen robots in movies.

In this work, we wanted to explore how these cinematic
portrayals of robots relate to people’s attitudes towards them.
Breazeal [3], MacDorman et al. [5], and Bartneck et al. [2]
all touch upon the role of cinema in shaping our views to-
wards robots; here we sought to delve a bit deeper.

We present an exploratory study that surveys 287 peo-
ple from a wide range of ages and cultural backgrounds on
their attitudes towards robots (via the NARS measure [6])
and which of 12 films portraying robots (half positive/half
negative) they have seen. Our preliminary findings suggest
an overall relationship between movie watching and NARS
scores (more robot movies seen correlates with more posi-



tive attitudes towards robots), and between certain positive
portrayals of robots and NARS scores (viewing Bicentennial
Man, Moon, or Wall-E contributes to more positive atti-
tudes).

2. METHODOLOGY
We conducted two within-subjects studies. The first was

conducted in person at the London Secret Cinema during
a week in June 2010, and the second was conducted online
via Survey Monkey during the months of November and De-
cember 2010.

2.1 Measures
We prepared two self-report measures for this study. The

first was the Negative Attitudes Toward Robots Scale (NARS)
[6]. This is a summed measure that assesses negative atti-
tudes toward robots via a 5-point attitudinal scale. The
measure contains three sub-scales: “negative attitudes to-
ward emotions in interaction with robots,” “negative atti-
tudes toward the social influence of robots,” and “negative
attitudes toward situations of interaction with robots.” [10].
We used the abbreviated, 11-item version of NARS intro-
duced by Syrdal et al. [11] due to its high validity in pre-
dominantly English-speaking/Western populations.

Our second measure was a list of twelve films, and partic-
ipants indicated which they had seen. Each film on the list
involved robots as main characters and the release dates of
the films spanned across several decades. Half of the films
portrayed their robot protagonists generally in a positive
way (Bicentennial Man, Moon, Short Circuit, Star Wars,
and Wall-E) and the other half generally in a negative one
(Artificial Intelligence, I, Robot; Metropolis, Surrogates, Ter-
minator, and 2001: A Space Odyssey). Further details about
each of the films can be found in Fig. 4.

2.2 Data Collection
In June of last year, the first author was invited to bring

her real-time mimicking robot [9] to be part of a science
exhibition at a London “Secret Cinema” event. (See Fig. 2).
Attendees purchase tickets in advance to an unknown film,
and are told to dress up in unusual styles of clothing and
bring various props (e.g., sunglasses and umbrellas). Also,
before the film is screened they explore a large warehouse
filled with artists, musicians, and actors, all interacting with
sets and scenes from the film.

June’s Secret Cinema film was Bladerunner, and the au-
thor brought her robot and joined other scientists (zoologists
and perceptual scientists) to be part of a “stealthy science”
exhibition embedded within a room in the warehouse. Our
robot was installed for a week at the warehouse, and atten-
dees were opportunistically asked to complete our survey
before entering the room with the robot.

Following the initial data we received from the film exhi-
bition, we wanted to expand our sample of respondents, and
therefore also conducted a study on Survey Monkey.

2.3 Participants
In the first study, participants were recruited by an ex-

perimenter by word of mouth, asking them if they would be
willing to answer a few questions. In the second study, par-
ticipants were recruited via a University electronic bulletin
board, Gumtree, Facebook, and word of mouth. Neither
set of participants were compensated, though for the online

Figure 2: Overall, the more robot films one saw, pos-
itive or negative, the more positive their attitudes
toward robots.

study participants could enter a raffle for a $20 gift certifi-
cate to Amazon.com.

287 people participated in our two studies, 132 in the
in-person study and 155 in the online study. In terms of
reported nationality, the largest group was British (39%)
followed by American (24%), and the rest came from all
over the world, including Bulgaria, China, Brazil, Taiwan,
Turkey, Israel, Latvia, Korea, Romania, and many others.
Nearly all respondents considered themselves fluent in En-
glish (97%). 114 participants were male and 173 female, and
their ages ranged from 19-73 (s.d. = 7.65).

3. RESULTS

3.1 Overall movie watching
We first looked to see if overall movie watching was asso-

ciated with lower NARS scores, and used Pearson’s corre-
lation to compare these normally distributed variables. We
found a significant relationship - more movies seen is associ-
ated with lower NARS scores (thus, more positive attitudes
toward robots), r = -.281, p < .001.

3.2 How particular films affect NARS scores
To determine how individual films related to negative robot

attitudes, we ran a univariate factorial ANOVA with our 12
films as fixed factors, and NARS score as our dependent
variable. Because these films only had two levels, watched
or didn’t watch, we did not run any planned contrasts or
post hoc tests. (Thus, this was effectively a regression).

Three movies that portray robots in a positive light had
a significant main effect on NARS Score; seeing them led
to lower score (i.e., more positive attitudes). These films
include: Bicentennial Man, F (1, 274) = 4.97, p < .05, r =
.13, Moon, F (1, 274) = 4.19, p < .05, r = .12, and Wall-E ,
F (1, 274) = 3.87, p = .05, r = .12. All reported tests are
Bonferroni corrected.

No other films, with positive or negative robot portrayal,
had a significant impact on NARS score.



Figure 3: Frequency of films seen across all partici-
pants.

4. DISCUSSION
We presented an exploratory study with 287 participants

that examined how seeing particular films might influence
attitudes toward robots. Our findings suggest that seeing
more films portraying robots (whether positive or negative)
is negatively correlated with NARS scores. Thus, seeing
more of these films tends to be associated with more positive
attitudes towards robots. We also found significant relation-
ships between three films in particular that are significantly
inversely proportional to NARS scores: Bicentennial Man,
Moon, and Wall-E, though with small effect sizes.

In this work we did not control for how recently someone
saw a particular film, how many times they saw it, if they
watched it in its entirety, and so on. Also, it is likely that
people who enjoy watching science fiction films are more
able to envision a future with robots among us, due to being
interested in technology in the first place.

Despite these limitations, we believe these results are of
interest, in that they offer some support for Allport’s Con-
tact Theory - the more exposure people have to “out-group”
members (i.e., robots), the more positive their attitudes to-
ward them [1]. It also lends support to Bartneck et al. [2]
who found that previous exposure to robots has a positive
effect on a person’s attitude toward robots. This suggests
further work is warranted in exploring how exposure to fic-
tional robots may influence interaction.

5. ACKNOWLEDGMENTS
This work is supported by the Qualcomm Studentship

in Computing, The Neil Weisman Fund, and The Gates
Cambridge Trust. We would also like to thank the staff of
Guerilla Science, particularly Jen Wang, Zoe Cormier, and
Louis Buckley. Thanks also to Peter McOwan and Milan
Verma for their support.

6. REFERENCES
[1] G. Allport. The nature of prejudice. Basic Books, 1979.

[2] C. Bartneck, T. Suzuki, T. Kanda, and T. Nomura.
The influence of people’s culture and prior experiences

with aibo on their attitude towards robots. AI and
Society, 21:217–230, 2007. 10.1007/s00146-006-0052-7.

[3] C. Breazeal. Designing Sociable Robots. The MIT
Press, 2004.

[4] IFR. World robotics 2010 service robots. Technical
report, International Federation of Robotics, Oct.
2010.

[5] K. MacDorman, S. Vasudevan, and C. Ho. Does Japan
really have robot mania? Comparing attitudes by
implicit and explicit measures. AI & Society,
23(4):485–510, 2009.

[6] T. Nomura, T. Suzuki, T. Kanda, and K. Kato.
Measurement of negative attitudes toward robots.
Interaction Studies, 7, 2006.

[7] C. Ray, F. Mondada, and R. Siegwart. What do
people expect from robots? In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS 2008), pages 3816 –3821, 2008.

[8] L. D. Riek, N. Mavridis, S. Antali, N. Darmaki,
Z. Ahmed, M. Al-Neyadi, and A. Alketheri. Ibn Sina
steps out: Exploring Arabic attitudes toward
humanoid robots. In In Proc. of The Second Int’l
Symposium on New Frontiers in Human-Robot
Interaction at AISB 2010, 2010.

[9] L. D. Riek, P. C. Paul, and P. Robinson. When my
robot smiles at me: Enabling human-robot rapport via
real-time head gesture mimicry. Journal on
Multimodal User Interfaces, 3(1), 2010.

[10] L. D. Riek, T. Rabinowitch, P. Bremner, A. Pipe,
M. Fraser, and P. Robinson. Cooperative gestures:
effective signaling for humanoid robots. In Proc. of the
5th ACM/IEEE Int’l Conference on Human-Robot
Interaction, 2010.

[11] D. Syrdal, K. Dautenhahn, K. Koay, and M. Walters.
The negative attitudes towards robots scale and
reactions to robot behaviour in a live human-robot
interaction study. In In Proc. of the AISB Symposium
on New Frontiers in Human-Robot Interaction.
Citeseer, 2009.

[12] L. Takayama, W. Ju, and C. Nass. Beyond dirty,
dangerous and dull: what everyday people think
robots should do. pages 25–32, 2008.

[13] L. Wang, P. Rau, V. Evers, B. Robinson, and
P. Hinds. When in Rome: the role of culture &
context in adherence to robot recommendations. In
Proc. of the 5th ACM/IEEE International Conf. on
Human-Robot Interaction, 2010.

[14] A. Weiss, R. Bernhaupt, M. Tscheligi, and E. Yoshida.
Addressing user experience and societal impact in a
user study with a humanoid robot. In In Proceedings
of the AISB Symposium on New Frontiers in
Human-Robot Interaction, Edinburgh, UK, 2009.



Figure 4: A list of the films used in the study. Six films portrayed their robot protagonists generally in a
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(Artificial Intelligence, I, Robot, Metropolis, Surrogates, Terminator, and 2001: A Space Odyssey).
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ABSTRACT 
We describe how the notion of “adaptation gap” can be used to 
describe the differences between the functions of a robotic agent 
that the users are expecting from it before starting their 
interactions and the functions they perceive after their interactions 
in this paper. We investigated the effect of this adaptation gap on 
the users’ behaviors toward a robotic agent. The results show that 
the positive or negative signs of this adaptation gap significantly 
affect the users’ behaviors towards the agents. 

Categories and Subject Descriptors 
H5.2 User Interfaces: Evaluation/methodology; J.4 Social and 
behavioral sciences: Psychology. 

General Terms 
Experimentation, Human Factors. 

Keywords 
Adaptation gap, users’ expectations and perceptions, users’ 
behaviors toward agents. 

1. INTRODUCTION 
Various interactive agents such as robotic agents [1] and 
embedded conversational agents (ECA) [2,3] have been 
developed to assist us with our daily tasks. In particular, 
researchers in the human-computer interaction and human-robot 
interaction communities are working hard to create such 
interactive agents. In these fields, the issue “how the users’ 
mental models of an agent formed before the interactions affect 
their interaction with it” is keenly focused on. Since users 
supposedly base their mental models about an agent on its 
appearance, its behaviors, and their preferences for the agent, the 

users’ mental model significantly affects their interaction [4]. For 
example, when a user encounters a dog-like robot, s/he expects a 
dog-like behavior from it, and s/he naturally speaks to it using 
commands and other utterances intended for a real dog, such as 
“sit,” “lie down,” and “fetch.” However, s/he does not act this 
way toward a cat-like robot. 

Several studies have focused on the effects of the users’ mental 
models about an agent on their interactions. Matsumoto et al. [5] 
proposed a “Minimal Design Policy” for designing interactive 
agents and concluded that the agent’s appearance should be 
minimized in its use of anthropomorphic features so that the users 
do not overestimate or underestimate the agents’ competences. In 
fact, they applied this minimal design policy to developing Muu, 
their interactive robot [6] and Talking Eye, a life-like agent [7]. 
Kiesler [8] argued that the design of an agent should include a 
process that anticipates a user’s mental model about the agent on 
the basis of the theory of common ground [9]; that is, individuals 
engaged in conversation must share knowledge (so-called, 
common ground) in order to be understood and have a meaningful 
conversation. In particular, she stated that the agents should be 
designed in such a way that a user could easily estimate her/his 
common ground (shared knowledge) with them. We believe that 
this design approach would be quite effective for users, especially 
at the beginning of an interaction, because it may determine 
whether or not the user would actually start interaction with a 
given agent. 

2. ADAPTATION GAP BETWEEN A 
HUMAN AND AN AGENT 
However, approaches like Matsumoto et al.’s [5] or Kiesler’s [8] 
have a serious problem when the agent expresses behaviors that 
completely deviate from the users’ mental model. Imagine that a 
user meets a human-like robot that looks very much like a real 
human being. This user would intuitively form a mental model of 
the robot, expecting fluent human-like speech, dialogue, and 
dexterous limb motions. However, if this particular robot could 
only express machine-like speech and halting limb motions that 
completely deviate from her/his mental model, s/he would be 
immediately disappointed with this robot because of its 
unexpected behaviors. The user would then stop interacting with 
it. To solve this problem, we need to carefully design the users’ 
expectations and perceptions of the agents during their 
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interactions, because such expectations and perceptions would 
assist users in determining whether this agent is worth interacting 
with or not. 

 

Figure 1. Intuitive Concept of Adaptation Gap 

 

In this study, we focus on the difference between the users’ 
expectations regarding the function of the agent and the users’ 
actual perceived function, which is one of the factors that affects 
the users’ impressions. We called this difference the adaptation 
gap (AG). In particular, AG can be defined as AG = Fafter - Fbefore. 
Here, Fafter is the function that a user actually perceives of the 
agent, and Fbefore is the users’ expected function of the agent. We 
assume that this AG would have the following three properties 
[10,11]. 

 AG < 0 (Fafter< Fbefore): When the users’ expected function 
exceeds their perceived function, there is a negative 
adaptation gap. In this case, most people would be 
disappointed by the agent, would not believe the robot’s 
outputs, and stop interacting with it. 

 AG > 0 (Fafter> Fbefore): When the users’ perceived function 
exceeds their expected function, there is a positive 
adaptation gap. In this case, most people would not be 
disappointed by the agent, would believe the robot’s outputs, 
and continue interacting with it. 

 AG = 0 (Fafter= Fbefore): When the perceived function equals 
the expected function, there is no adaptation gap. In this 
case, the agent would be regarded as just an instrument for 
users. 

For example, when Fbefore is larger than Fafter (say, when a user 
meets the human-like robot on the left in Figure 1), AG would 
have a negative value (AG<0), and the user would most likely be 
disappointed. However, when Fafter is larger than Fbefore (say, 
when a user meets the machine-like robot on the right in Figure 1), 
AG would have a positive value (AG>0), and the user would be 
interested in interacting with this agent.   

In particular, we assume that the sign of AG value strongly affects 
the user’s behaviors toward the agents. Therefore, we investigated 
the relationship between the signs of AG and the user’s actual 
behavior toward the agents, e.g., whether the users accept the 
agents’ suggestions or not, in this study. Therefore, the 
independent variable in this study is the sign of AG while the 
dependent variable is the users’ behaviors. We assumed that this 
investigation would lead to verification of the above three 
properties concerning AG. Namely, if the users’ behaviors are 

significantly influenced by AG (=Fafter - Fbefore), we can conclude 
that the properties of AG are verified. 

3. EXPERIMENT 
3.1 Overview 
We conducted an experiment to investigate how the positive or 
negative signs of AG affected the users’ behaviors towards an 
agent. This experiment consisted of two phases. The first phase 
was to measure the sign of the AG as an independent variable 
(exploration phase), while the second phase was to measure the 
users’ behaviors as a dependent variable (exploitation phase).  

 

Figure 2. Treasure Hunting Video Game 

 

 

Figure 3. MindStroms Robotic Agent 

 

We chose a “treasure hunting” video game (Figure 2) as the 
experimental environment for observing the interaction between a 
user and an agent in both phases. In this game, a character on a 
computer monitor operated by a user walks on a straight road, 
with three tiny hills appearing along the way. A gold coin is 
inside one of the three hills, while the other two hills have nothing. 
In the exploration phase, the game ends after the character meets 
40 sets of hills and the approximate duration of the game is about 
3 minutes, while in the exploitation phase, the game ends after 20 
sets of hills. The goal of this game is to get as many gold coins as 
possible. A robotic agent (MS; MindStorms, LEGO Corporation, 
Figure 3), which was placed next to the user, told the participant 
where it expected the coin would be each time. MS told the user 



the expected position by beeping the number, e.g., one beep 
meant the first hill, two beeps meant the second hill (middle), and 
three beeps meant the third hill. The participant could freely 
accept or reject the agents’ suggestions. The participants were 
allowed to know whether the robot’s suggestion was right or not 
in each trial in the exploration phase, while they were not allowed 
to know whether the given suggestion was right or not in the 
exploitation phase (actually, the selected hill just showed a 
question mark and a closed treasure box, see Figure 2). Note that 
this experimental setting was introduced because we needed the 
participant to estimate the robotic agent's function and the sign of 
AG was determined only in an exploration phase, not in an 
exploitation phase. 

The participants were informed that 1 point was equivalent to 10 
Japanese yen (about 10 US cents) and that, after the experiment, 
they could purchase some stationery (e.g., file holders or USB 
flash memories) of equivalent value with their points. The 
position of the coin in the three hills was randomly assigned. 

3.2 Participants  
Thirty Japanese university students (22 men and 8 women; 19 - 
25 years old) participated. These participants were randomly 
divided into the following two groups in terms of their 
expectations of the robot’s ability before the experiment. 

 Lower Expectation Group (15 participants): Before the 
exploration phase, an experimenter gave the following 
instructions to these participants, “The rate at which this 
robot succeeded in detecting the position of a coin was 
10%.” Therefore, their expectations (Fbefore) were forced set 
at 10%. 

 Higher Expectation Group (15 participants): Before the 
exploration phase, the experimenter gave these instructions 
to them, “The rate at which this robot succeeded in 
detecting the position of a coin was 90%.” Therefore, their 
expectations (Fbefore) were forced set at 90%. 

 

Figure 4. Experimental Setting. 

 

We conducted a manipulation check in both groups just before the 
experiment to ask them, “What rate will this robot succeed in 
detecting the position of a coin?” However, no participants were 
eliminated because no one answered the totally deviated rates 
(e.g., “100%” in Lower Expectation Group). Actually, the rate at 
which the robotic agent succeeded in detecting the position of the 

coin in the exploration phase was set at 33%. This 33% should 
have became Fafter for all the participants in both groups, so the 
values (and sign) of AG would be automatically determined; that 
is, the ideal values of AG in the Lower Expectation Group should 
be around +23 (i.e., Fafter - Fbefore = 33% - 10%), and the ideal AG 
in the Higher Expectation Group should be around - 67 (Fafter - 
Fbefore = 33% - 90%).  

The speech sounds of the robotic agent were remotely operated by 
an experimenter in the next room performing in the Wizard of Oz 
(WOZ) manner via an FM transmitter and radio tuner loaded on 
the MS. The treasure hunting video game was projected on a 46-
inch LCD screen in front of the participants (Figure 4). The order 
of the beeping sounds from the robotic agent was counterbalanced 
across the participants. 

3.3 Analysis 
We investigated the effect of the signs of AG on the users’ 
behaviors towards the robotic agents. Therefore, the independent 
variable was the sign of AG and the dependent variable was the 
participants’ behaviors. The sign of AG would be automatically 
determined in the exploration phase; that is, the participants in the 
Lower Expectation Group would show the positive sign of AG 
while the ones in the Higher Expectation Group gave the negative 
sign of AG. Also, in order to acquire the users’ behaviors as 
dependent variables, we then calculated the acceptance rate, 
indicating how many of the agent’s suggestions the participants 
accepted in the exploitation phase; because the 20 sets of hills 
appear in the exploitation phase, the maximum acceptance rate 
was 20.  

The purpose of this experiment was to compare the participants’ 
acceptance rates among the two experimental groups. If we could 
observe the phenomenon in which the participants in the Lower 
Expectation Group showed higher acceptance rates than the ones 
in the Higher Expectation Group, we would have concluded that 
the signs of AG significantly affected the users’ behaviors 
towards the agents in the way we expected. Moreover, we could 
argue that the properties of AG were verified. 

3.4 Results 
At first we checked whether the acquired independent variables 
(e.g., signs of AG) were appropriately set in the exploration 
phase; specifically, whether the participants in the Lower 
Expectation Group showed the positive signs of AG and also the 
ones in the Higher Expectation Group gave the negative sign of 
AG. For the 15 participants in the Lower Expectation Group, the 
average value of AG was +6.0 (SD=8.79), and for the 15 
participants in the Higher Expectation Group, the average values 
of AG was -43.9 (SD=25.2). Although these values were not 
really similar to our ideal AG values (i.e., +23 in Lower 
Expectation Group and -67 in Higher Expectation Group), there 
was a significant difference between the two values 
(F(1,28)=49.12, p<.01 (**)). Therefore, we confirmed that the 
independent variables were appropriately set. 

We then calculated the acceptance rate as a dependent variable. 
For the 15 participants in the Lower Expectation Group, the 
average acceptance rate of the robot’s 20 suggestions was 9.40 
(SD=4.33), and for the 15 participants in the Higher Expectation 
Group, the average rate was 5.13 (SD=4.47, see Figure 5). The 
acceptance rates for both experimental groups were then analyzed 



using a one-way analysis of variance (ANOVA) (between-subject 
design; independent variables: signs of AG, positive or negative, 
dependent variable: acceptance rates). The result of the ANOVA 
showed a significant difference between the two experimental 
groups (F(1,28)=6.58, p<.05 (*)); that is, the participants in the 
Lower Expectation Group showed a significantly higher 
acceptance rate compared to the ones in the Higher Expectation 
Group. Therefore, we could conclude that the signs of AG 
significantly affected the participants’ behaviors towards the 
agent, and moreover, we also confirmed that the properties of AG 
was clearly verified; when the users’ expected the function to 
exceed their perceived function, most of the people would be 
disappointed with the agent and would stop interacting with it, 
while when the users’ perceived function exceeded their expected 
function, most people would not be disappointed with the agent 
and would continue interacting with it. 

 

Figure 5. Acceptance Rate in Two Groups. 

4. DISCUSSION AND CONCLUSIONS 
From the results of our experiment, we observed that the 
participants with a positive sign of AG showed a higher 
acceptance rate compared to the ones who showed a negative sign 
of AG. Therefore, we confirmed that the signs of AG significantly 
affected the users’ behaviors towards the robotic agents. These 
results clearly supported the properties of AG mentioned in the 
Section 2, so they will contribute in proposing a novel interaction 
design strategy, e.g., “the agents that evoke higher expectations 
compared to the actual functions should not be used for the 
interaction task with users.”  

At a glance, these results seem to recommend that a specific 
design strategy like “Fbefore should be set as low as possible to 
make the signs of AG positive.” However, such a lower Fbefore 
would have some possibilities to make users deeply disappointed 
with the agent before the interaction, and eventually they would 
not start the interaction. Therefore, clarifying the appropriate 
range of Fbefore would be a significant issue for utilizing this AG 
for actual interaction design strategy. 

In this study, we did not focus the values of AG, but on the signs 
of AG, since it was quite difficult to precisely comprehend or 
measure the users’ digitized, expected, and perceived functions of 
the agents. Moreover, it is assumed that such digitized values for 
the agents’ functions would be affected by various aspects, e.g., 
gender, educational level, religious belief, or preferences. We are 

now planning to tackle the issue of “how to handle the values of 
AG” in collaboration with product designers and social 
psychologists. We believe such collaborations would control the 
values of AG in a more elegant manner and would lead to 
contributing to a much more sophisticated  concept of AG. 
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ABSTRACT
This paper presents two user studies conducted in the frame-
work of the FP7 EU Project IURO, Interactive Urban Robot.
Within these user studies we wanted to explore which expec-
tations users could have towards the robot during itinerary
requests in terms of (1) appearance and (2) communication
style respectively. The results of these two studies indicate
that people expect the robot to look anthropomorphic, but
not completely humanoid and to communicate in accordance
to social norms, with a special focus on turn taking and feed-
back provision.

Categories and Subject Descriptors
H.5.2 [Information Interface and Presentation]: User
Interfaces—Evaluation/methology ; I.2.9 [Artificial Intelli-
gence]: Robotics—miscellanious

General Terms
Theory, Verification

Keywords
Navigation Robot, User Expectations, Appearance, Com-
munication Style

1. INTRODUCTION
In general, interactive service robots provide people with
information they need or want to have, like mobile museum
guides. People address the robot and know what to obtain
from it. However, what would happen if the perspective is
inverted and the robot arbitrarily addresses passers-by in
public (urban) areas in order to obtain ’vital’ information
from them: In which direction is square X? Where can I
find shop Y? What would pedestrians expect from a robot
behaving like this? That is one of our main research interests
in the IURO project - Interactive Urban Robot. In the first
year of this three-year project we wanted to analyze the
interaction context public space and the user requirements
for the IURO robot.

In this position paper, we are going to present and discuss
two user studies, conducted within this project. Both stud-
ies were based on a scenario, in which the IURO robot is sent
to a pharmacy to buy medicine and deliver it to a patient.
It is assumed that the IURO robot was instructed to buy
the medicine at the “Alte Hofapotheke” which is located at
“Alter Markt No. 6”, in the old town of Salzburg, Austria.
Figure 5 shows a similar interaction scenario with the ACE
robot (Autonomous City Explorer) which was the national
pilot project for the international IURO project [1].

The main idea was to challenge the pre-assumption that
an anthropomorphic design and a human-oriented commu-
nication style are suited best for the IURO robot. Thus, we
wanted to explore the expectations of inexperienced users to-
wards an autonomous navigation robot to incorporate them
into the overall system design.

Figure 1: ACE Robot Asking for the Way in the
City Center of Munich

The goal of these studies was to identify expectations to-
wards the (1) appearance and (2) the communication style
of the IURO robot. The first study was a focus group in
which we wanted to explore if people actually expect IURO
to have a humanoid shape. In the second study, we wanted
to find out how people imagine an itinerary request dialogue,
in order to achieve a successful route description, by means
of a Wizard-of-Oz experiment. The paper closes with a dis-
cussion about the meaning of the expectations of inexperi-
enced users towards the IURO robot. Moreover, we discuss
general implications for future work in the research field of
expectations in HRI, which are in our opinion relevant to
explore.



2. MOTIVATION AND RELATED WORK
Several studies in the research fields of Human-Computer
Interaction (HCI) and Human-Robot Interaction (HRI) in-
dicate that people tend to respond differently towards au-
tonomous interactive systems than they do towards “normal
computing systems” [2]. The Media Equation Theory in the
1990ies already revealed that people treat media and com-
puting systems in a more social manner, like real people and
places [14]. However, not only the responses differ, the ex-
pectations also vary and tend into a more social direction,
the more anthropomorphized the system design is [10].

As previous studies could show, inexperienced users tend to
set up a mental model about the robot’s tasks and func-
tionalities even before the actual interaction starts [13, 5,
10, 9]. For instance, when an inexperienced user has to in-
teract with a robot for the first time, the first impression
of the robot is paramount to successfully initiate and main-
tain the interaction. Thus, it is important that the robot’s
appearance matches with its task to increase its believabil-
ity. Exploratory studies in the research field of HRI indicate
that people have very clear assumptions that anthropomor-
phic robots should be able to perform social tasks and follow
social norms and conventions.

It is assumed that a humanoid form will ease the interaction
with sociable robots, because the rules for human social in-
teraction will be invoked and thus a humanoid robot will
provide a more intuitive interface [19]. In 1970 Masahiro
Mori, proposed the well known hypothetical graph of the un-
canny valley, which predicted that the more human a robot
looks, the more familiar it is, until a point is reached at
which subtle imperfections make the robot seem eerie [20].

However, anthropomorphic design carries a lot of baggage
with it, in terms of specific expectations, such as intelli-
gence, adaptation towards user behavior, and following so-
cial norms and human-oriented perception cues [3]. Thus,
we are interested in exploring the necessity of anthropomor-
phic design and natural language for successful navigation
of the IURO robot.

Regarding the investigation of design spaces, focus groups
are considered to be a good tool to explore and collect partic-
ipants’ ideas, perceptions, attitudes and expectations. Sim-
ilarly, the method has been applied in the research field of
HRI to generate data on user experience and design issues,
for instance in the design process of a growing robot [6].
The focus group performed by Green at al. [17] was used
to inform the design and functionality for an assistive robot.
Weiss et al. [18] used a focus group to investigate differences
in perception of an autonomous and a tele-operated robot,
putting special emphasis on user experience and social ac-
ceptance .

Regarding the the investigation of the communication style
we assumed in a pre-study of human dialogues for direc-
tion retrievals [11] that the factor “politeness” would have a
major influence on the successfulness of the dialog, as po-
liteness is also mentioned as important influence factor in
several human-computer communication studies [14] . How-
ever, the pre-study did not support this assumption, but re-
sulted in the factor“feedback”being the most powerful influ-

encing factor regarding the successfulness in human-human
dialogues. Moreover, feedback is known to be an important
factor in usability engineering [12], in human-robot commu-
nication [7], and in natural language [15, 16].

3. THE USER STUDIES
In the phase of requirement analysis for the IURO robot,
we conducted two user studies to identify the expectations
towards the robot in terms of (1) appearance and (2) com-
munication style respectively.

3.1 User Study on Appearance
The first study was a focus group, in which we discussed how
the robot should look like [4] with our participants. At the
beginning of the focus group, the participants were intro-
duced to the interaction scenario of the IURO robot, each
participant had to describe and/or draw his/her imagina-
tions and present it to the others. Subsequently, the group
was asked to create a common design solution. Therefore,
we provided them our so-called“robot-building-set” [18] con-
taining the most important parts of a robot (feet, arms,
head, torso) in three different variations (functional, human-
like and animal-like, see figure 2) to investigate the preferred
robotic embodiment. All parts were presented to the par-
ticipants completely mixed with the request to create their
notion of an interactive urban robot.

Figure 2: The Robot Building Set

In a next step, the participants were shown 18 pictures of ex-
isting robots, categorized in accordance to [8] into anthropo-
morphic, zoomorphic and functional design , randomly put
together figure 3 shows some examples of these categorized
robots. The aim of these primes was to ground their design
solution on state of the art in robotic design and thus min-
imize the ideas based on robots displayed in science fiction.
Subsequently, the participants were asked to re-discuss their
solution. In a last step, the participants discussed potential
interaction modalities.

3.2 User Study on Communication
The second study was a laboratory-based, controlled exper-
iment with a NAO robot, in which we investigated the influ-
ence of the factor feedback on the participants’ perception
of the communication. The study was set up as between
subjects design with a total of 40 participants. Condition 1
= “feedback”, Condition 2 = “no feedback”. The robot was
wizarded in a way that made the participants thought that
the robot is acting autonomously.



Figure 3: Robot Primes

The robot acted according to the findings of previous stud-
ies on natural language interaction in four steps: introduc-
tion, giving/receiving directions, confirmation, and conclu-
sion [1], whereby the step “confirmation” differed between
the conditions “feedback” and “no feedback”. In accordance
to our findings from the pre-analysis of the human-human
dialogues on itinerary requests we decided to include four
types of feedback:

1. affirmative verbal feedback: the robot says “Ok”

2. verbal fact feedback: the robot repeats direction infor-
mation

3. affirmative non verbal feedback: the robot nods its
head after it processed an information

4. non verbal fact feedback: the robot points into the
direction

To test if the existence of feedback improves the successful-
ness and/or the efficiency of short term interaction in the
context of asking for directions, the robot interacted as fol-
lows (20 times with a male voice, 20 times with a female
voice):

1. The robot approached the participant, greeted him/her
and asked for the way to the“Alte Hofapotheke”. [Robot:
“Excuse me, could you please tell me how to get to the
Alte Hofapotheke?”]

2. The participants were then advised to explain the di-
rections as naturally as possible to the robot (free
choice of words).

3. The wizard thanked the participant, if he understood
the route description, otherwise he asked for an alter-
native.

• Condition 1: During the explanations of the par-
ticipant, the robot uttered an affirmative ok and
nodded its head to indicate that it is receiving and
processing the information. After the participant
provided the information, the robot repeated the
most important facts verbally (e.g. “Ok, first I
go straight, then right, and then there it is”) and
by pointing towards the indicated direction, and
then it waited for the participant to confirm. Af-
ter the confirmation the robot thanked the par-
ticipant for the help and moved towards the “Alte
Hofapotheke”. [Robot: “Thank you for your help.
Good bye!”]

• Condition 2: During the explanations of the par-
ticipant, the robot stood completely still and ut-
tered not a single sound. After approximately
three seconds the robot thanked the participant
for the help and moved towards the “Alte Ho-
fapotheke”. [Robot: “Thank you for your help.
Good bye!”]

The scenery for the itinerary request was rebuilt as a model
town (a reconstruction of the real scenario of the preceding
study) in order to achieve comparable results to the human
dialogue study. By means of projecting photographs of the
real location on the wall of the laboratory and playing city
sounds in the background, an additional city atmosphere was
created. Successfulness was defined as the fact, if a partici-
pant was able to explain the destination to the robot with-
out help from the researcher and without walking around
the model town.

Figure 4: Study Setting of the Second User Study

3.3 Expectations in Terms of Appearance
Most of the participants associated the terms of accuracy
and rationality with robots, for two persons robots are fur-
ther associated with perfection. The design issues brought
up within the workshop could be divided into functional
(weather-proof, robust, stable) and non-functional require-
ments (height, cute, non-threatening, friendly appearance,
cordial materials) and general ideas. Most surprising was
that in the first discussions only one participant imagined
a IURO robot of a humanoid shape. His design idea was



strongly inspired by humanoid robots known from the movies.
Two participants stressed that it is most important for the
robot to have a friendly appearance, neither being a machine
nor human-like, and one participant asked for a “human
within the machine”: human-like components to be added to
the robot as a machine. When consolidating their ideas into
one common design, the participants’ solution was a robot
that was neither anthropomorphic nor merely functional (see
figure 5).

Figure 5: The participants’ design of an interactive
urban robot

3.4 Expectations in Terms of Communication
By means of a requirements study on human-human commu-
nication during itinerary requests, the most important influ-
encing factor liable for the success or failure of a dialogue re-
garding direction-retrieval in public space could be detected:
“Adequately timed feedback” [11]. Adequately timed feed-
back ensures that the conversation runs smoothly and the
interaction partners are able to track if the communication
partner can follow the conversation and the provided direc-
tions. It is important that the feedback is given in time, as
too late or missing feedback causes confusion.

The second study with the NAO robot approved this as-
sumption. Our main assumption of feedback being a crucial
influencing factor for the successfulness of information re-
trieval in the context of asking for directions in public space
could be proved on both, an objective (1) and a subjective
level (2):

1. A highly significant difference could be made out be-
tween the two feedback conditions regarding the fact
if the participants said “You are welcome” to the robot
after it had thanked them for providing the desired
information. Participants in the condition “feedback”
more actively engaged in the interaction and were more
likely to see the robot as an equal interaction partner in
applying human interaction patterns (a polite phrase
like “you are welcome”) to this human-robot interac-
tion scenario. A trend could be shown for the questions
if the participants had to concentrate to interact with
the NAO robot and if it is on the whole easy to interact
with the NAO robot. For both questions those partic-
ipants in the feedback condition gave a better rating
(“I have to concentrate less” and “The interaction with
NAO is on the whole easier.”).

2. Participants with condition“feedback”mentioned more
positive and less negative aspects after the interac-
tion with NAO as participants in the condition “no
feedback”. Repeating the retrieved information at the
end of the conversation and inquiring in case the robot
does not understand the directions, was considered the
most important actively perceived feedback modali-
ties. Almost all participants thought that the pro-
vision/withholding of feedback influences the course
of an interaction. Participants in the condition “feed-
back” were influenced positively, participants in the
condition “no feedback” said that they missed to re-
ceive feedback from their robotic interaction partner.
In total 13 participants in the condition “no feedback”
stated that they would want to receive feedback from
the robot. Five participants in the condition “feed-
back”wanted the robot to display facial expression and
4 participants from both conditions wanted to improve
the robot’s reaction time. Finally, nine participants of
both conditions mentioned that the robot was in their
opinion very polite, which is again a form of feedback.

4. DISCUSSION
Overall, our two user studies haven shown how deeply the
expectations of inexperienced users towards robotic systems
are embedded and entangled within our social world and
that the development of technologies cannot be analyzed
separated from society. Even though research can never
be free of methodological biases, an obvious weakness of
our studies are the pre-assumptions about anthropomorphic
shape and natural dialogue, which we however tried to chal-
lenge.

Regarding interpersonal communication, it seems that the
IURO robot is first of all expected to conform to social
norms. However, we have to keep in mind the potential bias
in the results do to the Wizard-of-Oz set-up: did we measure
the user’s perception of the robot or of the human wizard,
who stands behind the scenes? In this context it is relevant
to mention that our wizard was sitting in a different room
in a different part of the building and that in the debriefing
of the experiment all our participants mentioned that they
did not expect that the robot was remote controlled.

To avoid wrong expectations which may occur due to the
limited conversational skills of the IURO robot, it is as well
important that the robot’s utterances and actions are co-
herent. Regarding input, the robot must be able to process
the following information that is possibly provided by the
pedestrians: verbal directions potentially completed with
gestures, reference points (e.g. sights, restaurants, etc.),
context information (e.g. color of a building, old or new
building, etc.), and explicit (100 meters) as well as implicit
distances (for a short way).

In the IURO project a statistical semantic interpretation
model is currently developed by the project partners. This
model will include methods for fusing speech input with ges-
ture input, as well as assigning confidence scores to seman-
tic interpretations. Additionally a dialogue manager will
be developed which decides the system’s actions, whether it
should try to elicit more information, switch to more direct
questions or end the dialogue and ask another human.



Regarding appearance it seems that the IURO robot should
be a combination of human-oriented perception cues with
an anthropomorphic, but not 100% humanoid appearance.
Therefore we aim in the project to combine a zoomorphic
robot head [21] with a functional designed body. As the
robot will not be able to grasp anything, we decided to use
a pointer, mounted on the head of the robot, for showing
directions, instead of an arm, to avoid wrong expectations.

But, what about the temporal aspect of expectations? Ex-
pectations change, as they change with the degree of estab-
lishment of a technology. Regarding expectations towards
robotic systems, we assume a complex interrelationship be-
tween the materiality (e.g. the embodiment of robots and
mass media), the degree of involvement in the development
process, and previous interaction experiences with the robot.
Thus, longitudinal analysis in the field of HRI will be rele-
vant in future, to observe how expectations change. Further-
more, in future, expectations will play a major role in the
establishment process of robots. Thus, we have to be aware
that our research also fosters the creation of certain expec-
tations in order to achieve successful interaction scenarios
and in order to reinforce technologies in our society.
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ABSTRACT 
Providing robotic systems with the ability to learn from past 

interactions with the user generates a host of new challenges for 

the design of the human-robot interaction. One of the major issues 

that need to be considered is user expectations regarding such a 

learning, adaptive robotic system. This paper briefly outlines 

several aspects of user expectations regarding robotic systems 

with learning capabilities which impact the interaction with the 

system and interface design.  

1. INTRODUCTION 
Today’s robots perform relatively poorly in unknown, 

unpredictable, and dynamic situations [4], so humans are usually 

needed to control the robot [2; 7]. One of the major challenges in 

current robot research is to give the robots the ability to adjust to a 

changing environment and to become increasingly autonomous. 

To allow these dynamic changes, robots should have some 

adaptive or online learning capabilities. Much research deals with 

learning mechanisms for robots [3]. However, in addition to the 

technical and computational challenges of implementing learning 

capabilities, these new abilities also change the users' interaction 

with the system. A learning robotic system becomes less 

predictable, and the interface and the controls will need to be 

adjusted to these new properties of the system. 

One issue that will strongly affect the acceptance of robotic 

systems and the efficiency of the use of such systems is their 

correspondence with user expectations. Expectations are beliefs 

about the most likely course of events. As such, they are a critical 

factor for control. Users will try to perform actions according to 

their expectations about the system capabilities, they will make 

control actions they expect to lead to desired results, and they will 

evaluate system behavior, relative to their expectations. 

Consequently, systems that behave according to user expectations 

will probably be more efficiently used, system control will be 

easier to learn and less error prone, and users will evaluate the 

systems more positively. Thus one should strive to develop a 

robot system that corresponds closely to the users' expectations.  

2. FACTORS INFLUENCING USER 

EXPECTATIONS ABOUT A ROBOTIC 

SYSTEM 
User expectations regarding a robotic system result from a 

number of factors. These include prior knowledge and beliefs 

regarding the human-robot system before the beginning of the 

interaction, experience gained by the user while using the system 

and information provided by the user interface during the use of 

the system. 

2.1 Initial user expectations of the human-

robot system 
Before beginning to interact with the robotic system, the user 

already has some expectations about the system. These 

expectations derive from a number of factors: 

1. Previous user experience with a similar system. If the 

user has already interacted with a similar system, he or 

she is likely to expect the new system to react similarly. 

This can pose a problem, if the behavior of the new 

system differs from the one the user previously 

encountered. For instance, users will be more likely to 

crash a mobile robot if they have previously used a 

similar mobile robot with automatic obstacle avoidance. 

Hence one should ensure that users are aware of the 

capabilities of the system before they start using it. 

However, explaining all functions of a robotic system in 

detail can be fastidious and against the goal of 

intuitiveness. Thus the interaction should avoid 

violating common heuristics or habits if this is possible. 

This recommendation is similar to the informal 

"principle of least astonishment" [1] in human-computer 

interaction. 

2. Prior user beliefs about robotics. The beliefs people 

have about robotics influence their expectations about 

robotic systems. For users who are not familiar with 

robots, these beliefs come mostly from their cultural 

background and hence from the image of the robots in 

the media, on TV, in books or in movies. Thus users 

may have high expectations about the degree of 

interactivity and the intelligence of a robotic system, 

especially if they are told that the system has learning 

capabilities. Furthermore, as these beliefs are linked to 



culture, they can differ greatly between users and 

especially between users from different countries [6]. 

3. Interface appearance. The appearance of the interface 

will influence the initial user expectations [5]. Interfaces 

can show visual cues and explicitly depict the predicted 

result of an action. For instance, in the case of the 

control of a mobile robot, a button displaying a 

graphical representation of the action it is linked to, like 

a curved arrow for rotating, should give an idea of its 

purpose and of the expected result if this button is 

pressed. 

4. Prior instructions. The instructions and information 

given to the users will influence their expectations. For 

instance, if users are told that a robot implements voice 

recognition, they will expect the robot to understand 

verbal commands. 

It has to be noted that the parameters Previous user experience 

with a similar system and Prior user belief about robotics cannot 

be controlled by the system designer and depend on the 

background of each user. Thus they can cause important 

variability one has to cope with. In contrast, the parameters 

Interface appearance and Prior instructions can be controlled by 

the system designer who can try to generate appropriate 

expectations regarding the system. 

 

Figure 1: Parameters influencing the initial user expectations 

about the robotic system 

2.2 Experience gained by the user while using 

the system 
While using the system, users can compare their expectation with 

the results of actions. When the results differ from expectations, 

they can correct their expectation for the next time they will have 

to perform the same action. This process has been described by 

Roese and Sherman [8] as the regulatory feedback loop. With 

sufficient experience with a robotic system users should be able to 

predict the results of their actions and match their expectations 

with the robot behavior. In other words, user expectations evolve 

with the user learning of the system. However, this process of 

updating the expectation by comparing them to events is limited 

in complex robotic systems where users do not receive direct 

feedback about the results of their inputs. 

 

Figure 2: Update of user expectations by comparing the result 

and the predicted result of an action 

2.3 Information from the interface 
The user interface can convert the raw data about the states of the 

robot and its relation with its environment into relevant 

information. Hence users can monitor the robot state and actions 

through the interface and constantly update their expectation from 

the information given by the robot. For instance, an interface 

explicitly displaying the heading of a differential-drive mobile 

robot will help the user correctly predict in which direction the 

robot will advance if it moves forward. 
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Figure 3: Continuous update of user expectations from the 

presentation of relevant information about the robot states 

and environment 

3. EXPECTATIONS IN THE CASE OF A 

LEARNING ROBOTIC SYSTEM 
On a classic robotic system, the user has to understand the direct 

relation between the inputs and the robot actions to form correct 

expectations. However, in a robotic system with learning 

capabilities the user has to understand much more complex 

relations between actions and consequences, and hence it is more 

difficult to form correct expectations. The user has to understand 

the relation between the timing of the inputs, the robot behavior 

over time, the constraints of the environment, the overall 

performance of the system, the level of autonomy of the robot, 

etc., depending on the parameters used and controlled by the 

learning algorithms. Consider the example of a mobile robot 



which, while driven to a destination by the user, learns to repeat 

the path autonomously by recording the relative position of 

landmarks to the path. To be able to predict if the robot will 

actually reach the target destination on its own and at which 

accuracy, the user will have to understand that the robot needs 

specific landmarks for its navigation. If so, the user will correctly 

expect the robot to fail navigating autonomously to a destination if 

no landmarks are located near the destination; or the user can 

predict correctly that moving landmarks will disrupt the robot's 

navigation. Similarly, the user will expect the robot to 

successfully and accurately reach its target if many landmarks are 

available. 

The expectations the users need to form in order to understand the 

links between inputs and actions can be classified in three 

categories according to their complexity. From lower to higher 

complexity: expectations regarding the low level control of the 

robot, expectations regarding the learning process and 

expectations regarding the execution of the learned situations. 

3.1 Expectations regarding the direct control 

of the robot 
Without any robot learning, users' expectations regarding the low 

level direct control of the robot generally converge rapidly with 

the actions performed by the robot. The user receives immediate 

feedback on the results of command inputs and can compare the 

results to expectations. After a few trials the user may be able to 

map the robot actions to the inputs. The number of trials needed 

for the user expectations to match the robot behavior depends on 

the quality of the interface and the situational awareness that it is 

able to provide. For instance, in the case of a mobile robot 

controlled by a limited voice interface, it may take more than one 

trial for the user to understand how to pronounce the words to 

command the robot. 

If the system implements learning, the consistency of the control 

interaction can be broken. An action that led to a specific result in 

the past does not necessarily do so anymore after learning 

occurred. In this case, if the learning mechanism is not transparent 

to the user, he or she may be unable to predict the results of an 

action after a change in the interaction. The user expectations and 

the robot behavior will differ until the user understands what has 

been modified by the learning process. For instance, if a mobile 

robot learns to avoid obstacle, the user will be surprised when the 

robot stops executing the learned process for the first time because 

the user may not expect such an action from the system. To keep 

user expectations consistent with the robot behavior, the user 

should be notified by the interface about the changes generated by 

the learning. Hence the expectation problem in the case of a 

learning robot is linked to the design of the interface. 

3.2 Expectations regarding the learning 

process   
Enabling the user to predict what the robot can learn and how to 

teach it is more complex than matching user expectations and 

robot behavior for simple, control oriented tasks. When users 

interact with the robot, they usually do not receive immediate 

feedback on what the robot is learning. Rather, the learning 

process needs to be completed and a situation needs to arise in 

which the learning can be applied before users can compare their 

expectations with what the robot actually learned. As a result, the 

convergence of expectations and robot behavior will be longer 

than for simple tasks. Therefore the initial user expectations are 

particularly important, and they should ideally match the actual 

system properties as closely as possible. Hence the following 

questions related to the parameters influencing the initial user 

expectation are relevant here: 

1. What are the users' previous experiences with a learning 

system? What are the adaptive technological systems 

that users may have encountered before? Is there any 

existing similar system, and if so, are there any 

generally accepted design guidelines?  

2. What are the users' beliefs about learning processes in 

robotic systems? Most users know very little about 

robot learning, and the most common physical learning 

entity the users are basing their beliefs on are humans. 

3. How should the interface design indicate that learning is 

implemented on the system? Should it be explicitly 

specified on the interface even before the system starts 

to learn? 

4. What information or instructions should be 

communicated to the users before they start using the 

robotic system? Providing critical information about the 

use of the learning system may help users form correct 

expectations about the capabilities of the system. For 

instance, informing the users that the system 

implements a learning process can save them the time 

needed to discover this fact by themselves (and 

wondering about the apparent inconsistencies in the 

system). 

As pointed out above, the interface also influences the formation 

of user expectations.  In contrast to the other relevant factors, the 

interface is created by the system designer, so it can be built to 

support appropriate expectations. It can be used to provide 

information to make the learning system transparent to the user. 

The interface should assist the learning process and shape user 

expectations, guiding users during all steps of the learning and 

explicitly showing them what the system has learned. It could also 

offer editing options to modify or cancel what has been learned to 

create a system that more closely matches user expectations. Thus 

in this case the expectation problem is also linked to the design of 

the interface. 

3.3 Expectations regarding the execution of 

the learned situations 
User expectations regarding the execution of the learned actions 

are very difficult to control because of the learning itself. If the 

learning is defined as a continuous process which constantly alters 

the robot's behavior, the users' predictions, built on the 

comparison of previous expectations and robot behavior, are 

never valid, as long as the learning process continues. To be able 

to form correct expectations about the execution of the learning 

actions by comparison, at least the following conditions have to 

be fulfilled: 

• The learning process has ended and the user is aware of 

this fact. 

• The user already encountered the same situation and no 

learning has occurred since. 



• The user remembers how the robot behaved the last 

time the same situation was encountered. 

Those conditions are too restrictive for dynamic and changing 

environments. In these environments the goal of learning is not to 

simply repeat a previously learned sequence of actions but to be 

able to react autonomously to a new situation, based on previous 

similar experiences. Hence the users' expectations should be built 

by other means than simple comparison with the robot behavior. 

Ideally, users should correctly understand the capabilities of the 

robot. For instance they should be able to understand what degree 

of similarity the robot is capable of dealing with to perform 

actions autonomously. Therefore the robot should constantly 

communicate information to the users for them to understand the 

robot. It is not required, and it won’t be possible, for the user to 

know all states and variables of the robot, but the user should at 

least be aware of the robot's “intention” to be able to form 

accurate expectations. 

Hence here, the role of the interface is even more critical than in 

the previous parts. It should be able to communicate the robot's 

intention to the users. How the interface will achieve this goal is a 

complex research question. It could use visual cues, for instance 

marking an object (such as an obstacle) on a map to indicate that 

the object has been taken into account. Alternatively, the system 

can use graphical previews, like displaying the path a mobile 

robot is planned to follow. 

Again, the role of the interface is critical in this part for shaping 

proper user expectations about the behavior of the robotic system. 

4. SUMMARY 
This paper started a reflection about user expectations regarding 

robotic systems with learning capabilities. First, we discuss 

factors influencing user expectations with robotic systems in 

general. We point to initial expectations of the user about the 

system, the experience the user gains using the system and the 

way the interface presents information about the robot to the user. 

We then discussed these factors in the case of a robot with 

learning capabilities, arguing that the robots ability to learn 

greatly increases the complexity of the influence of these factors 

on user expectations. Here users need to adjust their expectations 

to the changes in the system, adjusting them dynamically with the 

adaptations that occur in the system.  We point to three categories 

of expectations specific to learning systems: expectations 

regarding the direct control of the robot, expectations regarding 

the learning process and expectations regarding the execution of 

the learned situations. The main conclusion that can be drawn is 

that when learning is implemented in a robotic system, the 

influence of interface design on user expectations becomes 

critical. The interface must reflect the changes in robot 

functionality that occur with learning, avoiding situations in 

which the user is not aware of the learning that has occurred and 

will be surprised by its consequences. However, such an 

adjustment will necessarily introduce inconsistencies in the 

interface, which may make it less easily comprehendible for users.  

Hence the interface should be designed in order to dynamically 

shape user expectations according to the system changing 

behavior and capabilities due to learning, while maintaining 

maximal consistency in the basic interaction principles by which 

the user controls the robot. 

More empirical studies are needed on the different factors that 

affect user expectations. Also, more research is needed on the 

effects expectations have on the interaction with robotic systems 

and on the user satisfaction with the system. Eventually these 

studies should allow us to define guidelines for interface design 

and user training that will create expectations for interacting 

efficiently with robotic systems, and in particular robotic systems 

that can adjust their behavior to the individual user and to the 

changing environment.  

We are aiming to contribute in the future to the empirical studies 

about the effects of expectation on human-robot interaction. In 

this perspective, an experiment focused on the study of the 

interface design for robot with learning capabilities is currently in 

development. 
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